CCPortal
DOI10.1093/icesjms/fsz003
Fishers' knowledge improves the accuracy of food web model predictions
Bentley, Jacob W.1; Serpetti, Natalia1; Fox, Clive1; Heymans, Johanna J.1,2; Reid, David G.3
发表日期2019
ISSN1054-3139
EISSN1095-9289
卷号76期号:4页码:897-912
英文摘要

Fisher's knowledge offers a valuable source of information to run parallel to observed data and fill gaps in our scientific knowledge. In this study we demonstrate how fishers' knowledge of historical fishing effort was incorporated into an Ecopath with Ecosim (EwE) model of the Irish Sea to fill the significant gap in scientific knowledge prior to 2003. The Irish Sea model was fitted and results compared using fishing effort time-series based on: (i) scientific knowledge, (ii) fishers' knowledge, (iii) adjusted fishers' knowledge, and (iv) a combination of (i) and (iii), termed hybrid knowledge. The hybrid model produced the best overall statistical fit, capturing the biomass trends of commercially important stocks. Importantly, the hybrid model also replicated the increase in landings of groups such as crabs & lobsters and epifauna which were poorly simulated in scenario (i). Incorporating environmental drivers and adjusting vulnerabilities in the foraging arena further improved model fit, therefore the model shows that both fishing and the environment have historically influenced trends in finfish and shellfish stocks in the Irish Sea. The co-production of knowledge approach used here improved the accuracy of model simulations and may prove fundamental for developing ecosystem-based management advice in a global context.


WOS研究方向Fisheries ; Marine & Freshwater Biology ; Oceanography
来源期刊ICES JOURNAL OF MARINE SCIENCE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/99439
作者单位1.Scottish Assoc Marine Sci, Scottish Marine Inst, Oban PA37 1QA, Argyll, Scotland;
2.European Marine Board, Wandelaarkaai 7, B-8400 Oostende, Belgium;
3.Marine Inst, Oranmore H91 R673, Galway, Ireland
推荐引用方式
GB/T 7714
Bentley, Jacob W.,Serpetti, Natalia,Fox, Clive,et al. Fishers' knowledge improves the accuracy of food web model predictions[J],2019,76(4):897-912.
APA Bentley, Jacob W.,Serpetti, Natalia,Fox, Clive,Heymans, Johanna J.,&Reid, David G..(2019).Fishers' knowledge improves the accuracy of food web model predictions.ICES JOURNAL OF MARINE SCIENCE,76(4),897-912.
MLA Bentley, Jacob W.,et al."Fishers' knowledge improves the accuracy of food web model predictions".ICES JOURNAL OF MARINE SCIENCE 76.4(2019):897-912.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bentley, Jacob W.]的文章
[Serpetti, Natalia]的文章
[Fox, Clive]的文章
百度学术
百度学术中相似的文章
[Bentley, Jacob W.]的文章
[Serpetti, Natalia]的文章
[Fox, Clive]的文章
必应学术
必应学术中相似的文章
[Bentley, Jacob W.]的文章
[Serpetti, Natalia]的文章
[Fox, Clive]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。