Climate Change Data Portal
DOI | 10.1016/j.scitotenv.2019.01.299 |
Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands | |
Chatterjee, Soumendu1; Khan, Ansar2; Dinda, Apurba3; Mithun, Sk4; Khatun, Rupali5; Akbari, Hashem6; Kusaka, Hiroyuki7; Mitra, Chandana8; Bhatti, Saad Saleem9; Quang Van Doan10; Wang, Yupeng11 | |
发表日期 | 2019 |
ISSN | 0048-9697 |
EISSN | 1879-1026 |
卷号 | 663页码:610-631 |
英文摘要 | Tropical cities are more susceptible to the suggested fall outs from projected global warming scenarios as they are located in the Torrid Zone and growing at rapid rates. Therefore, research on the mitigation of urban heat island (UHI) effects in tropical cities has attained much significance and increased immensely over recent years. The UHI mitigation strategies commonly used for temperate cities need to be examined in the tropical context since the mechanism of attaining a surface energy balance in the tropics is quite different from that in the mid-latitudes. The present paper evaluates the performance of four different mitigation strategies to counterbalance the impact of UHI phenomena for climate resilient adaptation in the Kolkata Metropolitan Area (KMA), India. This has been achieved by reproducing the study sites, selected from three different urban morphologies of open low-rise, compact low-rise and mid-rise residential areas, using ENVI-met V 4.0 and simulating the effects of different mitigation strategies-cool pavement, cool roof, added urban vegetation and cool city (a combination of the three former strategies), in reducing the UHI intensity. Simulation results show that at a diurnal scale during summer, the green city model performed best at neighborhood level to reduce air temperature (T-a) by 0.7 degrees C, 0.8 degrees C and 1.1 degrees C, whereas the cool city model was the most effective strategy to reduce physiologically equivalent temperature (PET) by 2.8 degrees -3.1 degrees C, 2.2 degrees -2.8 degrees C and 2.8 degrees - 2.9 degrees C in the mid-rise, compact low-rise and open low-rise residential areas, respectively. It was observed that (for all the built environment types) vegetation played the most significant role in determining surface energy balance in the study area, compared to cool roofs and cool pavements. This study also finds that irrespective of building environments, tropical cities are less sensitive to the selected strategies of UHI mitigation than their temperate counter parts, which can be attributed to the difference in magnitude of urbanness. (C) 2019 Elsevier B.V. All rights reserved. |
WOS研究方向 | Environmental Sciences & Ecology |
来源期刊 | SCIENCE OF THE TOTAL ENVIRONMENT
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/97570 |
作者单位 | 1.Presidency Univ, Dept Geog, Kolkata, India; 2.Lalbaba Coll, Dept Geog, Howrah, India; 3.Vidyasagar Univ, Dept Geog & Environm Management, Midnapore, India; 4.Haldia Govt Coll, Dept Geog, Haldia, India; 5.Jadavpur Univ, Sch Oceanog Studies, Kolkata, India; 6.Concordia Univ, Heat Isl Grp, Bldg Civil & Environm Engn, Montreal, PQ, Canada; 7.Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki, Japan; 8.Auburn Univ, Dept Geosci, Auburn, AL 36849 USA; 9.Univ Liverpool, Dept Geog & Planning, Sch Environm Sci, Liverpool, Merseyside, England; 10.Ctr Climate Res Singapore, Kim Chuan, Singapore; 11.Xi An Jiao Tong Univ, Dept Architecture, Xian, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Chatterjee, Soumendu,Khan, Ansar,Dinda, Apurba,et al. Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands[J],2019,663:610-631. |
APA | Chatterjee, Soumendu.,Khan, Ansar.,Dinda, Apurba.,Mithun, Sk.,Khatun, Rupali.,...&Wang, Yupeng.(2019).Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands.SCIENCE OF THE TOTAL ENVIRONMENT,663,610-631. |
MLA | Chatterjee, Soumendu,et al."Simulating micro-scale thermal interactions in different building environments for mitigating urban heat islands".SCIENCE OF THE TOTAL ENVIRONMENT 663(2019):610-631. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。