CCPortal
DOI10.1016/j.atmosenv.2019.01.045
High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region
Zhao, Chen1; Liu, Zhaorong1; Wang, Qing2; Ban, Jie2; Chen, Nancy Xi3; Li, Tiantian2
发表日期2019
ISSN1352-2310
EISSN1873-2844
卷号203页码:70-78
英文摘要

Remote sensing is an effective means of observing and detecting global aerosol distribution and changes over time, which impact human health and climate change. However, aerosol optical depth (AOD) always has low spatial coverage, which not only affects the analysis of AOD but also harms many relevant applications of the data, such as utilization to estimate PM2.5. In our study, we utilize the random forest model, which is an effective ensemble learning method, to estimate the gaps of Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data with a spatial resolution of 0.01 degrees x 0.01 degrees in a typical contaminated region of Beijing-Tianjin-Hebei during 2010-2016. Our model performs accurately in that the results of R-2 testing exceed 0.9 and the final estimated AOD coverage achieves 100%. The average value of the AOD is 0.44 (0.41-0.47 by year) over the study period. The simulation values of AOD have an obvious seasonal distribution, with the highest AOD in summer. The AOD estimations in the southern region are higher than those in the northern region. Aerosol Robotic Network (AERONET) AOD observations are compared with MODIS AOD (R-2 = 0.44) and AOD estimations (R-2 = 0.36). We analyze and screen each of the variables to compute their contributions. Specifically, the elevation and 2-m dew point are the most important in modeling the AOD, while road data, snowfall depth and snowfall have the least impact on modeling the AOD. Practical applications of AOD data include estimating the various impacts of PMPM2.5 concentrations on health based on the AOD observations in China's typically polluted areas that have cloud influence. We compare two measurement ranges that will most accurately model and fill the AOD data missing in areas. After careful consideration, we determine that our preferred range is 0-2.


WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
来源期刊ATMOSPHERIC ENVIRONMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/96459
作者单位1.Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China;
2.Chinese Ctr Dis Control & Prevent, Natl Inst Environm Hlth, Beijing 100021, Peoples R China;
3.Univ Calif Los Angeles, Dept Epidemiol, Fielding Sch Publ Hlth, Los Angeles, CA USA
推荐引用方式
GB/T 7714
Zhao, Chen,Liu, Zhaorong,Wang, Qing,et al. High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region[J],2019,203:70-78.
APA Zhao, Chen,Liu, Zhaorong,Wang, Qing,Ban, Jie,Chen, Nancy Xi,&Li, Tiantian.(2019).High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region.ATMOSPHERIC ENVIRONMENT,203,70-78.
MLA Zhao, Chen,et al."High-resolution daily AOD estimated to full coverage using the random forest model approach in the Beijing-Tianjin-Hebei region".ATMOSPHERIC ENVIRONMENT 203(2019):70-78.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Chen]的文章
[Liu, Zhaorong]的文章
[Wang, Qing]的文章
百度学术
百度学术中相似的文章
[Zhao, Chen]的文章
[Liu, Zhaorong]的文章
[Wang, Qing]的文章
必应学术
必应学术中相似的文章
[Zhao, Chen]的文章
[Liu, Zhaorong]的文章
[Wang, Qing]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。