CCPortal
DOI10.1016/j.envsoft.2019.01.003
Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models
Zaherpour, Jamal1; Mount, Nick1; Gosling, Simon N.1; Dankers, Rutger2; Eisner, Stephanie3,11; Gerten, Dieter4,5; Liu, Xingcai6; Masaki, Yoshimitsu7; Schmied, Hannes Mueller8,9; Tang, Qiuhong6; Wada, Yoshihide10
发表日期2019
ISSN1364-8152
EISSN1873-6726
卷号114页码:112-128
英文摘要

This study presents a novel application of machine learning to deliver optimised, multi-model combinations (MMCs) of Global Hydrological Model (GHM) simulations. We exemplify the approach using runoff simulations from five GHMs across 40 large global catchments. The benchmarked, median performance gain of the MMC solutions is 45% compared to the best performing GHM and exceeds 100% when compared to the ensemble mean (EM). The performance gain offered by MMC suggests that future multi-model applications consider reporting MMCs, alongside the EM and intermodal range, to provide end-users of GHM ensembles with a better contextualised estimate of runoff. Importantly, the study highlights the difficulty of interpreting complex, non-linear MMC solutions in physical terms. This indicates that a pragmatic approach to future MMC studies based on machine learning methods is required, in which the allowable solution complexity is carefully constrained.


WOS研究方向Computer Science ; Engineering ; Environmental Sciences & Ecology
来源期刊ENVIRONMENTAL MODELLING & SOFTWARE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/96182
作者单位1.Univ Nottingham, Sch Geog, Sir Clive Granger Bldg, Nottingham NG7 2RD, England;
2.Met Off, FitzRoy Rd, Exeter EX1 3PB, Devon, England;
3.Univ Kassel, Ctr Environm Syst Res, Wilhelmshoher Allee 47, D-34109 Kassel, Germany;
4.Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany;
5.Humboldt Univ, Dept Geog, D-10099 Berlin, Germany;
6.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing, Peoples R China;
7.Hirosaki Univ, Bunkyocho 3, Hirosaki, Aomori 0368561, Japan;
8.Goethe Univ Frankfurt, Inst Phys Geog, Altenoferallee 1, D-60438 Frankfurt, Germany;
9.Senckenberg Biodivers & Climate Res Ctr SBiK F, Senckenberganlage 25, D-60325 Frankfurt, Germany;
10.IIASA, Schlosspl 1, A-2361 Laxenburg, Austria;
11.Norwegian Inst Bioecon Res, POB 115, N-1431 As, Norway
推荐引用方式
GB/T 7714
Zaherpour, Jamal,Mount, Nick,Gosling, Simon N.,et al. Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models[J],2019,114:112-128.
APA Zaherpour, Jamal.,Mount, Nick.,Gosling, Simon N..,Dankers, Rutger.,Eisner, Stephanie.,...&Wada, Yoshihide.(2019).Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models.ENVIRONMENTAL MODELLING & SOFTWARE,114,112-128.
MLA Zaherpour, Jamal,et al."Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models".ENVIRONMENTAL MODELLING & SOFTWARE 114(2019):112-128.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zaherpour, Jamal]的文章
[Mount, Nick]的文章
[Gosling, Simon N.]的文章
百度学术
百度学术中相似的文章
[Zaherpour, Jamal]的文章
[Mount, Nick]的文章
[Gosling, Simon N.]的文章
必应学术
必应学术中相似的文章
[Zaherpour, Jamal]的文章
[Mount, Nick]的文章
[Gosling, Simon N.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。