CCPortal
DOI10.1016/j.livsci.2019.01.017
Enteric methane emission can be reliably measured by the GreenFeed monitoring unit
Huhtanen, P.1; Ramin, M.1; Hristov, A. N.2
发表日期2019
ISSN1871-1413
EISSN1878-0490
卷号222页码:31-40
英文摘要

Ruminants contribute to global warming by releasing methane (CH4) gas to the atmosphere. This has increased interest among animal scientists to develop and improve methods measuring CH4 production in dairy cows. The GreenFeed emission monitoring unit (GEM) was introduced to estimate CH4 production by measuring gas concentration and flux when cattle visit a GEM. The objective of the present study was to compare CH4 production measured by the GEM with equations predicting CH4 production. Evaluation was based on 83 treatment means from dairy (n = 65) and growing cattle (n = 18) studies, in which CH4 production was measured by GEM. Methane production was predicted from intake and nutrient composition data with 18 empirical equations derived mainly from respiration chamber (RC) datasets. A comparison of observed and predicted values were performed for all equations using fixed and mixed regression models. The evaluation was based on root mean squared prediction error (RMSPE) expressed as a proportion of observed mean. All equations were precise in terms of high R-2 values (in most cases > 0.90), but there were considerable differences in RMSPE. Generally, the equations based on CH4 yield and dry matter or gross energy intake resulted in the smallest RMSPE. When expressed as a proportion of observed mean, RMSPE for the 18 equations was 11.2%, and it ranged from 6.9 to 28.4%. Twelve equations had RMSPE less than 10% of observed mean. Ranking of the models remained rather similar when the relationships between predicted and measured CH4 production was estimated using the mixed model regression analysis. Following the exclusion of 2 equations with large mean bias, RMSPE adjusted from random study effects was on average 6.2% of observed mean. Root MSPE were smaller than the corresponding errors in development of the equations, probably reflecting more standardized calibrations of the GEM system between laboratories compared with RC. In direct comparisons (n = 20) there was a good relationship in CH4 production measured by RC and GEM (R-2 = 0.92). Root MSPE was 35.7 g/d (12.9% of the observed) with mean bias, slope bias and random error being 12, 0 and 88% of MSPE, respectively. Results from the current analysis indicated that CH4 emissions measured by the GEM system agreed well with values predicted by empirical models derived from RC data suggesting indirectly that enteric CH4 emission can be reliably measured by the GEM system.


WOS研究方向Agriculture
来源期刊LIVESTOCK SCIENCE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/95600
作者单位1.Swedish Univ Agr Sci, Dept Agr Res Northern Sweden, SE-90183 Umea, Sweden;
2.Penn State Univ, Dept Anim Sci, University Pk, PA 16802 USA
推荐引用方式
GB/T 7714
Huhtanen, P.,Ramin, M.,Hristov, A. N.. Enteric methane emission can be reliably measured by the GreenFeed monitoring unit[J],2019,222:31-40.
APA Huhtanen, P.,Ramin, M.,&Hristov, A. N..(2019).Enteric methane emission can be reliably measured by the GreenFeed monitoring unit.LIVESTOCK SCIENCE,222,31-40.
MLA Huhtanen, P.,et al."Enteric methane emission can be reliably measured by the GreenFeed monitoring unit".LIVESTOCK SCIENCE 222(2019):31-40.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huhtanen, P.]的文章
[Ramin, M.]的文章
[Hristov, A. N.]的文章
百度学术
百度学术中相似的文章
[Huhtanen, P.]的文章
[Ramin, M.]的文章
[Hristov, A. N.]的文章
必应学术
必应学术中相似的文章
[Huhtanen, P.]的文章
[Ramin, M.]的文章
[Hristov, A. N.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。