Climate Change Data Portal
DOI | 10.1016/j.scitotenv.2018.11.311 |
Sectoral performance analysis of national greenhouse gas emission inventories by means of neural networks | |
Ganzenmueller, Raphael1; Pradhan, Prajal1; Kropp, Juergen P.1,2 | |
发表日期 | 2019 |
ISSN | 0048-9697 |
EISSN | 1879-1026 |
卷号 | 656页码:80-89 |
英文摘要 | Annual greenhouse gas emissions have increased more than threefold between 1950 and 2014, posing a major threat to the integrity of the entire earth system and subsequently to humankind. Consequently, roadmaps towards low-carbon pathways are urgently needed. Our study contributes to a more detailed understanding of the dynamics of country based emission patterns and uses them to discuss prospective low-carbon pathways for countries. As availability of databases on sectoral emissions substantially increased, we employ machine learning techniques to classify emission features and pathways. By doing so, 18 representative emission patterns are derived. Overall emissions from seven sectors and for 167 countries covering the time span from 1950 to 2014 have been used in the analyses. The following significant trends can be observed: a) increasing per capita emissions due to growing fossil fuel use in many parts of the world, b) a decline in per capita emissions in some countries, and c) a shift in the emission shares, i.e., a reduction of agricultural and land use contributions in certain regions. Using the emission patterns, their dynamics, and best performing countries as role models, we show the possibility for gaining a decent human development without significantly increasing per capita emissions. (C) 2018 Elsevier B.V. All rights reserved. |
WOS研究方向 | Environmental Sciences & Ecology |
来源期刊 | SCIENCE OF THE TOTAL ENVIRONMENT |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/94976 |
作者单位 | 1.Leibniz Assoc, Potsdam Inst Climate Impact Res PIK, POB 601203, D-14412 Potsdam, Germany; 2.Univ Potsdam, Dept Geo & Environm Sci, Potsdam, Germany |
推荐引用方式 GB/T 7714 | Ganzenmueller, Raphael,Pradhan, Prajal,Kropp, Juergen P.. Sectoral performance analysis of national greenhouse gas emission inventories by means of neural networks[J],2019,656:80-89. |
APA | Ganzenmueller, Raphael,Pradhan, Prajal,&Kropp, Juergen P..(2019).Sectoral performance analysis of national greenhouse gas emission inventories by means of neural networks.SCIENCE OF THE TOTAL ENVIRONMENT,656,80-89. |
MLA | Ganzenmueller, Raphael,et al."Sectoral performance analysis of national greenhouse gas emission inventories by means of neural networks".SCIENCE OF THE TOTAL ENVIRONMENT 656(2019):80-89. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。