Climate Change Data Portal
DOI | 10.5194/hess-23-405-2019 |
Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed | |
Saberi, Leila1; McLaughlin, Rachel T.1; Ng, G. -H. Crystal1,2; La Frenierre, Jeff3; Wickert, Andrew D.1,2; Baraer, Michel4; Zhi, Wei5; Li, Li5; Mark, Bryan G.6 | |
发表日期 | 2019 |
ISSN | 1027-5606 |
EISSN | 1607-7938 |
卷号 | 23期号:1页码:405-425 |
英文摘要 | Climate models predict amplified warming at high elevations in low latitudes, making tropical glacierized regions some of the most vulnerable hydrological systems in the world. Observations reveal decreasing streamflow due to retreating glaciers in the Andes, which hold 99% of all tropical glaciers. However, the timescales over which meltwater contributes to streamflow and the pathways it takes - surface and subsurface - remain uncertain, hindering our ability to predict how shrinking glaciers will impact water resources. Two major contributors to this uncertainty are the sparsity of hydrologic measurements in tropical glacierized watersheds and the complication of hydrograph separation where there is year-round glacier melt. We address these challenges using a multi-method approach that employs repeat hydrochemical mixing model analysis, hydroclimatic time series analysis, and integrated watershed modeling. Each of these approaches interrogates distinct timescale relationships among meltwater, groundwater, and stream discharge. Our results challenge the commonly held conceptual model that glaciers buffer discharge variability. Instead, in a subhumid water-shed on Volcan Chimborazo, Ecuador, glacier melt drives nearly all the variability in discharge (Pearson correlation coefficient of 0.89 in simulations), with glaciers contributing a broad range of 20 %-60% or wider of discharge, mostly (86 %) through surface runoff on hourly timescales, but also through infiltration that increases annual groundwater contributions by nearly 20 %. We further found that rainfall may enhance glacier melt contributions to discharge at timescales that complement glacier melt production, possibly explaining why minimum discharge occurred at the study site during warm but dry El Nino conditions, which typically heighten melt in the Andes. Our findings caution against extrapolations from isolated measurements: stream discharge and glacier melt contributions in tropical glacierized systems can change substantially at hourly to interannual timescales, due to climatic Dvariability and surface to subsurface flow processes. |
WOS研究方向 | Geology ; Water Resources |
来源期刊 | HYDROLOGY AND EARTH SYSTEM SCIENCES
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/92227 |
作者单位 | 1.Univ Minnesota, Dept Earth Sci, Minneapolis, MN 55455 USA; 2.Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55414 USA; 3.Gustavus Adolphus Coll, Dept Geog, St Peter, MN 56082 USA; 4.Univ Quebec, Construct Engn, Ecole Technol Super, Montreal, PQ H3C 1K3, Canada; 5.Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA; 6.Ohio State Univ, Dept Geog, Columbus, OH 43210 USA |
推荐引用方式 GB/T 7714 | Saberi, Leila,McLaughlin, Rachel T.,Ng, G. -H. Crystal,et al. Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed[J],2019,23(1):405-425. |
APA | Saberi, Leila.,McLaughlin, Rachel T..,Ng, G. -H. Crystal.,La Frenierre, Jeff.,Wickert, Andrew D..,...&Mark, Bryan G..(2019).Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed.HYDROLOGY AND EARTH SYSTEM SCIENCES,23(1),405-425. |
MLA | Saberi, Leila,et al."Multi-scale temporal variability in meltwater contributions in a tropical glacierized watershed".HYDROLOGY AND EARTH SYSTEM SCIENCES 23.1(2019):405-425. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。