Climate Change Data Portal
DOI | 10.3390/md17010049 |
CYC27 Synthetic Derivative of Bromophenol from Red Alga Rhodomela confervoides: Anti-Diabetic Effects of Sensitizing Insulin Signaling Pathways and Modulating RNA Splicing-Associated RBPs | |
Luo, Jiao1,2; Jiang, Bo2; Li, Chao2; Jia, Xiaoling2; Shi, Dayong3 | |
发表日期 | 2019 |
ISSN | 1660-3397 |
卷号 | 17期号:1 |
英文摘要 | RNA-binding proteins (RBPs) lie at the center of posttranscriptional regulation and the dysregulation of RBPs contributes to diabetes. Therefore, the modulation of RBPs is anticipated to become a potential therapeutic approach to diabetes. CYC27 is a synthetic derivative of marine bromophenol BDB, which is isolated from red alga Rhodomela confervoides. In this study, we found that CYC27 significantly lowered the blood glucose levels of diabetic BKS db mice. Moreover, CYC27 effectively ameliorated dyslipidemia in BKS db mice by reducing their total serum cholesterol (TC) and triglyceride (TG) levels. Furthermore, CYC27 was an insulin-sensitizing agent with increased insulin-stimulated phosphorylation of insulin receptors and relevant downstream factors. Finally, to systemically study the mechanisms of CYC27, label-free quantitative phosphoproteomic analysis was performed to investigate global changes in phosphorylation. Enriched GO annotation showed that most regulated phosphoproteins were related to RNA splicing and RNA processing. Enriched KEGG analysis showed that a spliceosome-associated pathway was the predominant pathway after CYC27 treatment. Protein-protein interaction (PPI) analysis showed that CYC27 modulated the process of mRNA splicing via phosphorylation of the relevant RBPs, including upregulated Cstf3 and Srrt. Our results suggested that CYC27 treatment exerted promising anti-diabetic effects by sensitizing the insulin signaling pathways and modulating RNA splicing-associated RBPs. |
WOS研究方向 | Pharmacology & Pharmacy |
来源期刊 | MARINE DRUGS
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/90880 |
作者单位 | 1.Qingdao Univ, Sch Publ Hlth, Qingdao 266071, Peoples R China; 2.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China; 3.Shandong Univ, State Key Lab Microbial Technol, Jinan 250100, Shandong, Peoples R China |
推荐引用方式 GB/T 7714 | Luo, Jiao,Jiang, Bo,Li, Chao,et al. CYC27 Synthetic Derivative of Bromophenol from Red Alga Rhodomela confervoides: Anti-Diabetic Effects of Sensitizing Insulin Signaling Pathways and Modulating RNA Splicing-Associated RBPs[J],2019,17(1). |
APA | Luo, Jiao,Jiang, Bo,Li, Chao,Jia, Xiaoling,&Shi, Dayong.(2019).CYC27 Synthetic Derivative of Bromophenol from Red Alga Rhodomela confervoides: Anti-Diabetic Effects of Sensitizing Insulin Signaling Pathways and Modulating RNA Splicing-Associated RBPs.MARINE DRUGS,17(1). |
MLA | Luo, Jiao,et al."CYC27 Synthetic Derivative of Bromophenol from Red Alga Rhodomela confervoides: Anti-Diabetic Effects of Sensitizing Insulin Signaling Pathways and Modulating RNA Splicing-Associated RBPs".MARINE DRUGS 17.1(2019). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。