CCPortal
DOI10.1016/j.ecolmodel.2018.10.018
Advantages and insights from a hierarchical Bayesian growth and dynamics model based on salmonid electrofishing removal data
Laplanche, Christophe1; Leunda, Pedro M.2; Boithias, Laurie3; Ardaiz, Jose4; Juanes, Francis5
发表日期2019
ISSN0304-3800
EISSN1872-7026
卷号392页码:8-21
英文摘要

Growth is a fundamental ecological process of stream-dwelling salmonids which is strongly interrelated to critical life history events (emergence, mortality, sexual maturity, smolting, spawning). The ability to accurately model growth becomes critical when making population predictions over large temporal (multi-decadal) and spatial (meso) scales, e.g., investigating the effect of global change. Body length collection by removal sampling is a widely-used practice for monitoring fish populations over such large scales. Such data can be efficiently integrated into a Hierarchical Bayesian Model (HBM) and lead to interesting findings on fish dynamics. We illustrate this approach by presenting an integrated HBM of brown trout (Salmo trutta) growth, population dynamics, and removal sampling data collection processes using large temporal and spatial scales data (20 years; 48 sites placed along a 100 km latitudinal gradient). Growth and population dynamics are modelled by ordinary differential equations with parameters bound together in a hierarchical structure. The observation process is modelled with a combination of a Poisson error, a binomial error, and a mixture of Gaussian distributions. Absolute fit is measured using posterior predictive checks, those results indicate that our model fits the data well. Results indicate that growth rate is positively correlated to catchment area. This result corroborates those of other studies (laboratory, exploratory) that identified factors besides water temperature that are related to daily ration and have a significant effect on stream-dwelling salmonid growth at a large scale. Our study also illustrates the value of integrated HBM and electrofishing removal sampling data to study in situ fish populations over large scales.


WOS研究方向Environmental Sciences & Ecology
来源期刊ECOLOGICAL MODELLING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/90063
作者单位1.Univ Toulouse, CNRS, INPT, EcoLab,UPS, Toulouse, France;
2.Gest Ambiental Navarra SA, C Padre Adoain 219 Bajo, Pamplona 31013, Spain;
3.Univ Toulouse, CNRS, IRD, GET,UPS, Toulouse, France;
4.Gobierno Navarra, Dept Desarrollo Rural & Media Ambiente, C Gonzalez Tablas 9, Navarra 31005, Spain;
5.Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada
推荐引用方式
GB/T 7714
Laplanche, Christophe,Leunda, Pedro M.,Boithias, Laurie,et al. Advantages and insights from a hierarchical Bayesian growth and dynamics model based on salmonid electrofishing removal data[J],2019,392:8-21.
APA Laplanche, Christophe,Leunda, Pedro M.,Boithias, Laurie,Ardaiz, Jose,&Juanes, Francis.(2019).Advantages and insights from a hierarchical Bayesian growth and dynamics model based on salmonid electrofishing removal data.ECOLOGICAL MODELLING,392,8-21.
MLA Laplanche, Christophe,et al."Advantages and insights from a hierarchical Bayesian growth and dynamics model based on salmonid electrofishing removal data".ECOLOGICAL MODELLING 392(2019):8-21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Laplanche, Christophe]的文章
[Leunda, Pedro M.]的文章
[Boithias, Laurie]的文章
百度学术
百度学术中相似的文章
[Laplanche, Christophe]的文章
[Leunda, Pedro M.]的文章
[Boithias, Laurie]的文章
必应学术
必应学术中相似的文章
[Laplanche, Christophe]的文章
[Leunda, Pedro M.]的文章
[Boithias, Laurie]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。