CCPortal
DOI10.5194/acp-18-11507-2018
Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol-snow mixing state based on an updated SNICAR model
He C.;   Flanner M.G.;   Chen F.;   Barlage M.;   Liou K.-N.;   Kang S.;   Ming J.;   Qian Y.
发表日期2018
ISSN16807316
卷号18期号:15
英文摘要We implement a set of new parameterizations into the widely used Snow, Ice, and Aerosol Radiative (SNICAR) model to account for effects of snow grain shape (spherical vs. nonspherical) and black carbon (BC)-snow mixing state (external vs. internal). We find that nonspherical snow grains lead to higher pure albedo but weaker BC-induced albedo reductions relative to spherical snow grains, while BC-snow internal mixing significantly enhances albedo reductions relative to external mixing. The combination of snow nonsphericity and internal mixing suggests an important interactive effect on BC-induced albedo reduction. Comparisons with observations of clean and BC-contaminated snow albedo show that model simulations accounting for both snow nonsphericity and BC-snow internal mixing perform better than those using the common assumption of spherical snow grains and external mixing. We further apply the updated SNICAR model with comprehensive in situ measurements of BC concentrations in the Tibetan Plateau snowpack to quantify the present-day (2000-2015) BC-induced snow albedo effects from a regional and seasonal perspective. The BC concentrations show distinct and substantial sub-regional and seasonal variations, with higher values in the non-monsoon season and low altitudes. As a result, the BC-induced regional mean snow albedo reductions and surface radiative effects vary by up to an order of magnitude across different sub-regions and seasons, with values of 0.7-30.7 and 1.4-58.4 W m'2 for BC externally mixed with fresh and aged snow spheres, respectively. The BC radiative effects are further complicated by uncertainty in snow grain shape and BC-snow mixing state. BC-snow internal mixing enhances the mean albedo effects over the plateau by 30-60 % relative to external mixing, while nonspherical snow grains decrease the mean albedo effects by up to 31 % relative to spherical grains. Based on this study, extensive measurements and improved model characterization of snow grain shape and aerosol-snow mixing state are urgently needed in order to precisely evaluate BC-snow albedo effects. © Author(s) 2018.
URLhttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85051625204&doi=10.5194%2facp-18-11507-2018&partnerID=40&md5=f56ad2043193fc7c332856d63e6363d2
语种英语
scopus关键词albedo; atmospheric modeling; black carbon; comparative study; grain size; in situ measurement; mixing; radiative forcing; reduction; snow; China; Qinghai-Xizang Plateau
来源期刊Atmospheric Chemistry and Physics
来源机构中国科学院西北生态环境资源研究院
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/77305
推荐引用方式
GB/T 7714
He C.; Flanner M.G.; Chen F.; Barlage M.; Liou K.-N.; Kang S.; Ming J.; Qian Y.. Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol-snow mixing state based on an updated SNICAR model[J]. 中国科学院西北生态环境资源研究院,2018,18(15).
APA He C.; Flanner M.G.; Chen F.; Barlage M.; Liou K.-N.; Kang S.; Ming J.; Qian Y..(2018).Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol-snow mixing state based on an updated SNICAR model.Atmospheric Chemistry and Physics,18(15).
MLA He C.; Flanner M.G.; Chen F.; Barlage M.; Liou K.-N.; Kang S.; Ming J.; Qian Y.."Black carbon-induced snow albedo reduction over the Tibetan Plateau: Uncertainties from snow grain shape and aerosol-snow mixing state based on an updated SNICAR model".Atmospheric Chemistry and Physics 18.15(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[He C.; Flanner M.G.; Chen F.; Barlage M.; Liou K.-N.; Kang S.; Ming J.; Qian Y.]的文章
百度学术
百度学术中相似的文章
[He C.; Flanner M.G.; Chen F.; Barlage M.; Liou K.-N.; Kang S.; Ming J.; Qian Y.]的文章
必应学术
必应学术中相似的文章
[He C.; Flanner M.G.; Chen F.; Barlage M.; Liou K.-N.; Kang S.; Ming J.; Qian Y.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。