CCPortal
Collaborative Research: Transient landscapes, temporally variable erosion rates, and the impact of glaciation and climate change on landscape morphodynamics
项目编号1123643
Lewis Owen
项目主持机构University of Cincinnati Main Campus
开始日期2012
结束日期2014-12-31
英文摘要Collaborative Research: Transient landscapes, temporally variable erosion rates, and the impact of glaciation and climate change on landscape morphodynamics.

James Spotila, Virginia Tech
Lewis Owen, University of Cincinnati

Over the past two decades, geologists have determined that erosion and climate, processes that work at the Earth?s surface, directly influence plate tectonics and mountain building, processes linked to the dynamics of Earth?s interior (crust and upper mantle). One climatic variation that has enormous influence of the effectiveness of erosion is temperature, as represented by the vast difference between erosion by rivers (i.e. fluvial erosion) and glaciers. A profound global acceleration in erosion several million years ago has been ascribed in countless studies to the onset of global cooling and the expansion of glaciers. This has lead to the idea that glaciers are absolutely efficient agents of erosion, acting like buzz saws that can erode rock as fast as plate tectonics pushes up mountains. Yet when this is examined in detail, there are numerous observations that suggest the behavior is more complex. We have identified heavily glaciated mountain ranges in tectonically active areas that may be eroding very slowly. There are also glaciated mountain ranges that may have experienced rapid erosion, despite being dominated by frozen beds (normally linked to slow erosion) and a lack of tectonic uplift. These observations suggest that there may be complex conditions that operate as thresholds for the onset of the extremely rapid, efficient glacial erosion. To test this, we will quantify what factors act as thresholds that control the response of mountain erosion to glaciation, including the factors of rock uplift rate, precipitation, and tectonic relief. This will be accomplished by expanding the case knowledge of glacial erosion controls, by quantifying chronologies of erosion rate over a range of timescales and erosive depths in four very different mountainous regions that span a range of conditions, including the Chugach and Kenai Ranges in Alaska, northwest Scotland, and the Presidential Range of New England. In each location we will test whether erosion accelerated with the onset of a specific stage of glacial development, by measuring erosion rates using several methods of radiogenic helium thermochronology (million year timescale) and cosmogenic dating, optically stimulated luminescence, and sedimentary records (spanning ten thousand to a hundred years).

By contributing to our understanding of erosion, climate, and tectonics, we will in effect help satisfy an innate human curiosity for how the landscape around us formed. We will also enable a better, more predictive understanding for how glacial and alpine landscapes respond to climate change, which is of timely, practical importance. In parallel with our research, our educational and museum outreach program will serve to connect to both students and the general public, kindling curiosity for Earth processes while conveying an experience of how geoscience problems are framed and tested through experimentation.
学科分类08 - 地球科学
资助机构US-NSF
项目经费111110
项目类型Standard Grant
国家US
语种英语
文献类型项目
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/70890
推荐引用方式
GB/T 7714
Lewis Owen.Collaborative Research: Transient landscapes, temporally variable erosion rates, and the impact of glaciation and climate change on landscape morphodynamics.2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lewis Owen]的文章
百度学术
百度学术中相似的文章
[Lewis Owen]的文章
必应学术
必应学术中相似的文章
[Lewis Owen]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。