CCPortal
DOI10.1039/c6gc01836j
QSAR models of human data can enrich or replace LLNA testing for human skin sensitization
Alves, Vinicius M.1,2; Capuzzi, Stephen J.1; Muratov, Eugene N.1,3; Braga, Rodolpho C.2; Thornton, Thomas E.1; Fourches, Denis4; Strickland, Judy5; Kleinstreuer, Nicole6; Andrade, Carolina H.2; Tropsha, Alexander1,7
发表日期2016
ISSN1463-9262
卷号18期号:24页码:6501-6515
英文摘要

Skin sensitization is a major environmental and occupational health hazard. Although many chemicals have been evaluated in humans, there have been no efforts to model these data to date. We have compiled, curated, analyzed, and compared the available human and LLNA data. Using these data, we have developed reliable computational models and applied them for the virtual screening of chemical libraries to identify putative skin sensitizers. The overall concordance between murine LLNA and human skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%), although several chemical classes had high concordance. We have succeeded to develop predictive QSAR models of all available human data with the external correct classification rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results afforded a higher CCR of 82% but at the expense of the reduced external dataset coverage (52%). We used the developed QSAR models for the virtual screening of the CosIng database and identified 1061 putative skin sensitizers; for seventeen of these compounds, we found published evidence of their skin sensitization effects. Models reported herein provide more accurate alternatives to LLNA testing for human skin sensitization assessment across diverse chemical data. In addition, they can also be used to guide the structural optimization of toxic compounds to reduce their skin sensitization potential.


语种英语
WOS记录号WOS:000389341800011
来源期刊GREEN CHEMISTRY
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/61571
作者单位1.Univ N Carolina, UNC Eshelman Sch Pharm, Div Chem Biol & Med Chem, Lab Mol Modeling, Chapel Hill, NC 27599 USA;
2.Univ Fed Goias, Lab Mol Modeling & Design, Fac Pharm, BR-74605170 Goiania, Go, Brazil;
3.Odessa Natl Polytech Univ, Dept Chem Technol, UA-65000 Odessa, Ukraine;
4.North Carolina State Univ, Bioinformat Res Ctr, Dept Chem, Raleigh, NC 27695 USA;
5.Integrated Lab Syst Inc, POB 13501, Res Triangle Pk, NC 27709 USA;
6.Natl Inst Environm Hlth Sci, Res Triangle Pk, NC 27709 USA;
7.Kazan Fed Univ, AM Butlerov Inst Chem, 18 Kremlyovskaya Str, Kazan 420008, Russia
推荐引用方式
GB/T 7714
Alves, Vinicius M.,Capuzzi, Stephen J.,Muratov, Eugene N.,et al. QSAR models of human data can enrich or replace LLNA testing for human skin sensitization[J]. 美国环保署,2016,18(24):6501-6515.
APA Alves, Vinicius M..,Capuzzi, Stephen J..,Muratov, Eugene N..,Braga, Rodolpho C..,Thornton, Thomas E..,...&Tropsha, Alexander.(2016).QSAR models of human data can enrich or replace LLNA testing for human skin sensitization.GREEN CHEMISTRY,18(24),6501-6515.
MLA Alves, Vinicius M.,et al."QSAR models of human data can enrich or replace LLNA testing for human skin sensitization".GREEN CHEMISTRY 18.24(2016):6501-6515.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alves, Vinicius M.]的文章
[Capuzzi, Stephen J.]的文章
[Muratov, Eugene N.]的文章
百度学术
百度学术中相似的文章
[Alves, Vinicius M.]的文章
[Capuzzi, Stephen J.]的文章
[Muratov, Eugene N.]的文章
必应学术
必应学术中相似的文章
[Alves, Vinicius M.]的文章
[Capuzzi, Stephen J.]的文章
[Muratov, Eugene N.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。