Climate Change Data Portal
DOI | 10.1021/es505846r |
Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning | |
Reid, Colleen E.1; Jerrett, Michael1,8; Petersen, Maya L.2,3; Pfister, Gabriele G.4; Morefield, Philip E.5; Tager, Ira B.2; Raffuse, Sean M.6; Balmes, John R.1,7 | |
发表日期 | 2015-03-17 |
ISSN | 0013-936X |
卷号 | 49期号:6页码:3887-3896 |
英文摘要 | Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R-2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemp oral data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event. |
语种 | 英语 |
WOS记录号 | WOS:000351324400073 |
来源期刊 | ENVIRONMENTAL SCIENCE & TECHNOLOGY
![]() |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/61465 |
作者单位 | 1.Univ Calif Berkeley, Sch Publ Hlth, Environm Hlth Sci Div, Berkeley, CA 94720 USA; 2.Univ Calif Berkeley, Sch Publ Hlth, Div Epidemiol, Berkeley, CA 94720 USA; 3.Univ Calif Berkeley, Sch Publ Hlth, Biostat Div, Berkeley, CA 94720 USA; 4.Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80301 USA; 5.US EPA, Natl Ctr Environm Assessment, Washington, DC 20460 USA; 6.Sonoma Technol Inc, Petaluma, CA 94954 USA; 7.Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA; 8.Univ Calif Los Angeles, Environm Hlth Sci Dept, Fielding Sch Publ Hlth, Los Angeles, CA 90095 USA |
推荐引用方式 GB/T 7714 | Reid, Colleen E.,Jerrett, Michael,Petersen, Maya L.,et al. Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning[J]. 美国环保署,2015,49(6):3887-3896. |
APA | Reid, Colleen E..,Jerrett, Michael.,Petersen, Maya L..,Pfister, Gabriele G..,Morefield, Philip E..,...&Balmes, John R..(2015).Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning.ENVIRONMENTAL SCIENCE & TECHNOLOGY,49(6),3887-3896. |
MLA | Reid, Colleen E.,et al."Spatiotemporal Prediction of Fine Particulate Matter During the 2008 Northern California Wildfires Using Machine Learning".ENVIRONMENTAL SCIENCE & TECHNOLOGY 49.6(2015):3887-3896. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。