Climate Change Data Portal
DOI | 10.1002/etc.2043 |
Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks | |
Hooper, Michael J.1; Ankley, Gerald T.2; Cristol, Daniel A.3; Maryoung, Lindley A.4; Noyes, Pamela D.5; Pinkerton, Kent E.6 | |
发表日期 | 2013 |
ISSN | 0730-7268 |
卷号 | 32期号:1页码:32-48 |
英文摘要 | Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemicalGCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemicalclimate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments. Environ. Toxicol. Chem. 2013;32:3248. (c) 2012 SETAC |
英文关键词 | Adverse outcome pathway;Acclimation;Weather |
语种 | 英语 |
WOS记录号 | WOS:000312545700007 |
来源期刊 | ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
![]() |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/61459 |
作者单位 | 1.US Geol Survey, Columbia Environm Res Ctr, Columbia, MO USA; 2.US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div, Duluth, MN USA; 3.Coll William & Mary, Dept Biol, Inst Integrat Bird Behav Studies, Williamsburg, VA 23185 USA; 4.Univ Calif Riverside, Dept Environm Sci, Riverside, CA 92521 USA; 5.Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA; 6.Univ Calif Davis, Ctr Hlth & Environm, Davis, CA 95616 USA |
推荐引用方式 GB/T 7714 | Hooper, Michael J.,Ankley, Gerald T.,Cristol, Daniel A.,et al. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks[J]. 美国环保署,2013,32(1):32-48. |
APA | Hooper, Michael J.,Ankley, Gerald T.,Cristol, Daniel A.,Maryoung, Lindley A.,Noyes, Pamela D.,&Pinkerton, Kent E..(2013).Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks.ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY,32(1),32-48. |
MLA | Hooper, Michael J.,et al."Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks".ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 32.1(2013):32-48. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。