Climate Change Data Portal
DOI | 10.3389/fmicb.2016.00500 |
Rapid Microbiome Changes in Freshly Deposited Cow Feces under Field Conditions | |
Wong, Kelvin1,2; Shaw, Timothy I.3,4; Oladeinde, Adelumola1,5; Glenn, Travis C.5; Oakley, Brian6; Molina, Marirosa1 | |
发表日期 | 2016-04-13 |
ISSN | 1664-302X |
卷号 | 7 |
英文摘要 | Although development of next generation sequencing (NGS) has substantially improved our understanding of the microbial ecology of animal feces, previous studies have mostly focused on freshly excreted feces. There is still limited understanding of the aging process dynamics of fecal microbiomes in intact cowpats exposed to natural environments. Fresh cowpats were sampled at multiple time points for 57 days under field conditions; half the samples were exposed to sunlight (unshaded) while the other half was protected from sunlight (shaded). The 16SRNA hypervariable region 4 was amplified from each sample and sequenced on an Illumina MiSeq Platform. While Clostridia, Bacteroidia, and Sphingobacteria were dominant classes of bacteria in fresh cowpats, Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Bacilli were the dominant classes by the end of the study, indicating a general shift from anaerobic to aerobic bacterial populations. This change was most likely influenced by the shift from cattle gut (anaerobic) to pasture ground (aerobic). Reduced moisture in cowpats may also contribute to the community shift since air can penetrate the dryer cowpat more easily. Twelve genera consisting pathogenic bacteria were detected, with Mycobacterium, Bacillus, and Clostridium being the most abundant; their combined abundance accounts for 90% of the total pathogenic genera. Taxonomic richness and diversity increased throughout the study for most samples, which could be due to bacteria regrowth and colonization of bacteria from the environment. In contrast to the high taxonomic diversity, the changes of PICRUSt inferred function profile were minimal for all cowpats throughout the study, which suggest that core functions predicted by PICRUSt may be too conserved to distinguish differences between aerobe and anaerobe. To the best of our knowledge, this is the first study demonstrating that cowpat exposure to air and sunlight can cause drastic microbiome changes soon after deposition in natural environments. Our findings offer important insights for future research characterizing the microbiome of feces collected in natural environments and the impact of cattle fecal contamination on water resources. |
英文关键词 | metagenomics;cattle feces;microbiome changes;oxygen exposure;sunlight exposure;fecal contamination |
语种 | 英语 |
WOS记录号 | WOS:000373980200001 |
来源期刊 | FRONTIERS IN MICROBIOLOGY
![]() |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/61292 |
作者单位 | 1.US EPA, Ecosyst Res Div, Athens, GA USA; 2.Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA; 3.Univ Georgia, Inst Bioinformat, Athens, GA 30602 USA; 4.St Jude Childrens Res Hosp, Dept Computat Biol, 332 N Lauderdale St, Memphis, TN 38105 USA; 5.Univ Georgia, Dept Environm Hlth Sci, Athens, GA 30602 USA; 6.Western Univ Hlth Sci, Coll Vet Med, Pomona, CA USA |
推荐引用方式 GB/T 7714 | Wong, Kelvin,Shaw, Timothy I.,Oladeinde, Adelumola,et al. Rapid Microbiome Changes in Freshly Deposited Cow Feces under Field Conditions[J]. 美国环保署,2016,7. |
APA | Wong, Kelvin,Shaw, Timothy I.,Oladeinde, Adelumola,Glenn, Travis C.,Oakley, Brian,&Molina, Marirosa.(2016).Rapid Microbiome Changes in Freshly Deposited Cow Feces under Field Conditions.FRONTIERS IN MICROBIOLOGY,7. |
MLA | Wong, Kelvin,et al."Rapid Microbiome Changes in Freshly Deposited Cow Feces under Field Conditions".FRONTIERS IN MICROBIOLOGY 7(2016). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。