Climate Change Data Portal
DOI | 10.1016/j.chemosphere.2016.07.065 |
High-throughput exposure modeling to support prioritization of chemicals in personal care products | |
Csiszar, Susan A.1; Ernstoff, Alexi S.2; Fantke, Peter2; Meyer, David E.3; Jolliet, Olivier4 | |
发表日期 | 2016-11-01 |
ISSN | 0045-6535 |
卷号 | 163页码:490-498 |
英文摘要 | We demonstrate the application of a high-throughput modeling framework to estimate exposure to chemicals used in personal care products (PCPs). As a basis for estimating exposure, we use the product intake fraction (PiF), defined as the mass of chemical taken by an individual or population per mass of a given chemical used in a product. We calculated use- and disposal- stage PiFs for 518 chemicals for five PCP archetypes. Across all product archetypes the use- and disposal- stage PiFs ranged from 10(-5) to 1 and 0 to 10(-3), respectively. There is a distinction between the use-stage PiF for leave-on and wash-off products which had median PiFs of 0.5 and 0.02 across the 518 chemicals, respectively. The PiF is a function of product characteristics and physico-chemical properties and is maximized when skin permeability is high and volatility is low such that there is no competition between skin and air losses from the applied product. PCP chemical contents (i.e. concentrations) were available for 325 chemicals and were combined with PCP usage characteristics and PiF yielding intakes summed across a demonstrative set of products ranging from 10(-8)-30 mg/kg/d, with a median of 0.1 mg/kg/d. The highest intakes were associated with body lotion. Bioactive doses derived from high-throughput in vitro toxicity data were combined with the estimated PiFs to demonstrate an approach to estimate bioactive equivalent chemical content and to screen chemicals for risk. (C) 2016 Elsevier Ltd. All rights reserved. |
英文关键词 | Exposure modeling;Personal care products;Mass balance modeling;Product intake fraction;Risk screening;High-throughput |
语种 | 英语 |
WOS记录号 | WOS:000384776800056 |
来源期刊 | CHEMOSPHERE
![]() |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/60788 |
作者单位 | 1.US EPA, Res Participat Program, ORISE, Cincinnati, OH 45268 USA; 2.Tech Univ Denmark, Quantitat Sustainabil Assessment Div, Dept Engn Management, Lyngby, Denmark; 3.US EPA, Off Res & Dev, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA; 4.Univ Michigan, Sch Publ Hlth, Environm Hlth Sci, Ann Arbor, MI 48109 USA |
推荐引用方式 GB/T 7714 | Csiszar, Susan A.,Ernstoff, Alexi S.,Fantke, Peter,et al. High-throughput exposure modeling to support prioritization of chemicals in personal care products[J]. 美国环保署,2016,163:490-498. |
APA | Csiszar, Susan A.,Ernstoff, Alexi S.,Fantke, Peter,Meyer, David E.,&Jolliet, Olivier.(2016).High-throughput exposure modeling to support prioritization of chemicals in personal care products.CHEMOSPHERE,163,490-498. |
MLA | Csiszar, Susan A.,et al."High-throughput exposure modeling to support prioritization of chemicals in personal care products".CHEMOSPHERE 163(2016):490-498. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。