CCPortal
DOI10.1039/c6gc02744j
High-throughput screening of chemicals as functional substitutes using structure-based classification models
Phillips, Katherine A.1,3; Wambaugh, John F.2; Grulke, Christopher M.2; Dionisio, Kathie L.3; Isaacs, Kristin K.3
发表日期2017-02-21
ISSN1463-9262
卷号19期号:4页码:1063-1074
英文摘要

Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional substitutes from large libraries of chemicals using machine learning based models. We collect and analyze publicly available information on the function of chemicals in consumer products or industrial processes to identify a suite of harmonized function categories suitable for modeling. We use structural and physicochemical descriptors for these chemicals to build 41 quantitative structure-use relationship (QSUR) models for harmonized function categories using random forest classification. We apply these models to screen a library of nearly 6400 chemicals with available structure information for potential functional substitutes. Using our Functional Use database (FUse), we could identify uses for 3121 chemicals; 4412 predicted functional uses had a probability of 80% or greater. We demonstrate the potential application of the models to high-throughput (HT) screening for "candidate alternatives" by merging the valid functional substitute classifications with hazard metrics developed from HT screening assays for bioactivity. A descriptor set could be obtained for 6356 Tox21 chemicals that have undergone a battery of HT in vitro bioactivity screening assays. By applying QSURs, we were able to identify over 1600 candidate chemical alternatives. These QSURs can be rapidly applied to thousands of additional chemicals to generate HT functional use information for combination with complementary HT toxicity information for screening for greener chemical alternatives.


语种英语
WOS记录号WOS:000395866600023
来源期刊GREEN CHEMISTRY
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/58804
作者单位1.ORISE, Oak Ridge, TN 37830 USA;
2.US EPA, Natl Ctr Computat Toxicol, Off Res & Dev, Res Triangle Pk, NC 27711 USA;
3.US EPA, Natl Exposure Res Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA
推荐引用方式
GB/T 7714
Phillips, Katherine A.,Wambaugh, John F.,Grulke, Christopher M.,et al. High-throughput screening of chemicals as functional substitutes using structure-based classification models[J]. 美国环保署,2017,19(4):1063-1074.
APA Phillips, Katherine A.,Wambaugh, John F.,Grulke, Christopher M.,Dionisio, Kathie L.,&Isaacs, Kristin K..(2017).High-throughput screening of chemicals as functional substitutes using structure-based classification models.GREEN CHEMISTRY,19(4),1063-1074.
MLA Phillips, Katherine A.,et al."High-throughput screening of chemicals as functional substitutes using structure-based classification models".GREEN CHEMISTRY 19.4(2017):1063-1074.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Phillips, Katherine A.]的文章
[Wambaugh, John F.]的文章
[Grulke, Christopher M.]的文章
百度学术
百度学术中相似的文章
[Phillips, Katherine A.]的文章
[Wambaugh, John F.]的文章
[Grulke, Christopher M.]的文章
必应学术
必应学术中相似的文章
[Phillips, Katherine A.]的文章
[Wambaugh, John F.]的文章
[Grulke, Christopher M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。