Climate Change Data Portal
DOI | 10.1016/j.jclepro.2016.12.094 |
Analysis of metallic and metal oxide nanomaterial environmental emissions | |
Tolaymat, Thabet1; El Badawy, Amro2; Genaidy, Ash2; Abdelraheem, Wael2,3; Sequeira, Reynold2 | |
发表日期 | 2017-02-01 |
ISSN | 0959-6526 |
卷号 | 143页码:401-412 |
英文摘要 | The current study presents evidence on metallic and metal oxide engineered nanomaterial (ENM) emissions into the environment and an analytic perspective of the outcomes of evaluated studies with respect to different individual end points along the lifecycle trajectory. The key findings suggest that 1) the published literature on emissions of metallic ENMs is limited in both the number and information available on the characteristics of emitted ENMs; 2) the studies are classified as experimental and computational studies focused on predicting ENM emissions; 3) the majority of studies investigated ENM emissions during nanomaterial use and waste management, followed by raw material manufacturing, and finally, nano-enabled product manufacturing; 4) the studies primarily reported the concentration/quantity of emitted ENMs, whereas the physical chemical characteristics of emitted ENMs were rarely measured or reported; and 5) the published literature primarily focused on emissions of silver and titanium dioxide ENMs and lacked similar information on other surging metallic and metal oxide ENMs such as nano-zero valent iron (nZVI), aluminum (Al), and aluminum oxide (Al2O3) ENMs. The evidence suggests that emitted nanoparticles into the air cover a wide range of concentrations below and above the allowable occupational exposure limits. The concentrations of nanoparticles in water systems are considered in the toxic to very toxic range for a variety of biological species. Given the critical gaps in knowledge, one cannot read across different sources of emissions for metallic and metal oxide ENMs hampering efforts with respect to understanding realistic scenarios for transformations in the natural environment and biological media. (C) 2016 Elsevier Ltd. All rights reserved. |
英文关键词 | Emission;Engineered nanomaterials;Physical-chemical properties;Environment |
语种 | 英语 |
WOS记录号 | WOS:000392789000038 |
来源期刊 | JOURNAL OF CLEANER PRODUCTION
![]() |
来源机构 | 美国环保署 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/58403 |
作者单位 | 1.US EPA, Off Res & Dev, Cincinnati, OH 45268 USA; 2.WorldTek Inc, Cincinnati, OH USA; 3.Sohag Univ, Fac Sci, Dept Chem, Sohag 82524, Egypt |
推荐引用方式 GB/T 7714 | Tolaymat, Thabet,El Badawy, Amro,Genaidy, Ash,et al. Analysis of metallic and metal oxide nanomaterial environmental emissions[J]. 美国环保署,2017,143:401-412. |
APA | Tolaymat, Thabet,El Badawy, Amro,Genaidy, Ash,Abdelraheem, Wael,&Sequeira, Reynold.(2017).Analysis of metallic and metal oxide nanomaterial environmental emissions.JOURNAL OF CLEANER PRODUCTION,143,401-412. |
MLA | Tolaymat, Thabet,et al."Analysis of metallic and metal oxide nanomaterial environmental emissions".JOURNAL OF CLEANER PRODUCTION 143(2017):401-412. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。