CCPortal
DOI10.1111/risa.12004
Nonparametric Bayesian Methods for Benchmark Dose Estimation
Guha, Nilabja1; Roy, Anindya1; Kopylev, Leonid2; Fox, John2; Spassova, Maria2; White, Paul2
发表日期2013-09-01
ISSN0272-4332
卷号33期号:9页码:1608-1619
英文摘要

The article proposes and investigates the performance of two Bayesian nonparametric estimation procedures in the context of benchmark dose estimation in toxicological animal experiments. The methodology is illustrated using several existing animal dose-response data sets and is compared with traditional parametric methods available in standard benchmark dose estimation software (BMDS), as well as with a published model-averaging approach and a frequentist nonparametric approach. These comparisons together with simulation studies suggest that the nonparametric methods provide a lot of flexibility in terms of model fit and can be a very useful tool in benchmark dose estimation studies, especially when standard parametric models fail to fit to the data adequately.


英文关键词BMDL;dirichlet distribution;BMDS software;integrated Brownian motion
语种英语
WOS记录号WOS:000324391400005
来源期刊RISK ANALYSIS
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/57972
作者单位1.Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA;
2.US EPA, Off Res & Dev, Washington, DC 20460 USA
推荐引用方式
GB/T 7714
Guha, Nilabja,Roy, Anindya,Kopylev, Leonid,et al. Nonparametric Bayesian Methods for Benchmark Dose Estimation[J]. 美国环保署,2013,33(9):1608-1619.
APA Guha, Nilabja,Roy, Anindya,Kopylev, Leonid,Fox, John,Spassova, Maria,&White, Paul.(2013).Nonparametric Bayesian Methods for Benchmark Dose Estimation.RISK ANALYSIS,33(9),1608-1619.
MLA Guha, Nilabja,et al."Nonparametric Bayesian Methods for Benchmark Dose Estimation".RISK ANALYSIS 33.9(2013):1608-1619.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guha, Nilabja]的文章
[Roy, Anindya]的文章
[Kopylev, Leonid]的文章
百度学术
百度学术中相似的文章
[Guha, Nilabja]的文章
[Roy, Anindya]的文章
[Kopylev, Leonid]的文章
必应学术
必应学术中相似的文章
[Guha, Nilabja]的文章
[Roy, Anindya]的文章
[Kopylev, Leonid]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。