CCPortal
DOI10.1016/j.taap.2013.08.006
Is the assumption of normality or log-normality for continuous response data critical for benchmark dose estimation?
Shao, Kan1; Gift, Jeffrey S.1; Setzer, R. Woodrow2
发表日期2013-11-01
ISSN0041-008X
卷号272期号:3页码:767-779
英文摘要

Continuous responses (e.g. body weight) are widely used in risk assessment for determining the benchmark dose (BMD) which is used to derive a U.S. EPA reference dose. One critical question that is not often addressed in dose-response assessments is whether to model the continuous data as normally or log-normally distributed. Additionally, if lognormality is assumed, and only summarized response data (i.e., mean +/- standard deviation) are available as is usual in the peer-reviewed literature, the BMD can only be approximated. In this study, using the "hybrid" method and relative deviation approach, we first evaluate six representative continuous dose-response datasets reporting individual animal responses to investigate the impact on BMD/BMDL estimates of (1) the distribution assumption and (2) the use of summarized versus individual animal data when a log-normal distribution is assumed. We also conduct simulation studies evaluating model fits to various known distributions to investigate whether the distribution assumption has influence on BMD/BMDL estimates. Our results indicate that BMDs estimated using the hybrid method are more sensitive to the distribution assumption than counterpart BMDs estimated using the relative deviation approach. The choice of distribution assumption has limited impact on the BMD/BMDL estimates when the within dose-group variance is small, while the lognormality assumption is a better choice for relative deviation method when data are more skewed because of its appropriateness in describing the relationship between mean and standard deviation. Additionally, the results suggest that the use of summarized data versus individual response data to characterize log-normal distributions has minimal impact on BMD estimates. (C) 2013 Elsevier Inc. All rights reserved.


英文关键词Benchmark dose;Continuous data;Normal distribution;Log-normal distribution
语种英语
WOS记录号WOS:000326141400022
来源期刊TOXICOLOGY AND APPLIED PHARMACOLOGY
来源机构美国环保署
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/56489
作者单位1.US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA;
2.US EPA, Natl Ctr Computat Toxicol, Res Triangle Pk, NC 27711 USA
推荐引用方式
GB/T 7714
Shao, Kan,Gift, Jeffrey S.,Setzer, R. Woodrow. Is the assumption of normality or log-normality for continuous response data critical for benchmark dose estimation?[J]. 美国环保署,2013,272(3):767-779.
APA Shao, Kan,Gift, Jeffrey S.,&Setzer, R. Woodrow.(2013).Is the assumption of normality or log-normality for continuous response data critical for benchmark dose estimation?.TOXICOLOGY AND APPLIED PHARMACOLOGY,272(3),767-779.
MLA Shao, Kan,et al."Is the assumption of normality or log-normality for continuous response data critical for benchmark dose estimation?".TOXICOLOGY AND APPLIED PHARMACOLOGY 272.3(2013):767-779.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao, Kan]的文章
[Gift, Jeffrey S.]的文章
[Setzer, R. Woodrow]的文章
百度学术
百度学术中相似的文章
[Shao, Kan]的文章
[Gift, Jeffrey S.]的文章
[Setzer, R. Woodrow]的文章
必应学术
必应学术中相似的文章
[Shao, Kan]的文章
[Gift, Jeffrey S.]的文章
[Setzer, R. Woodrow]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。