CCPortal
DOI10.1016/j.agrformet.2024.109892
The stomatal traits that conserve water without compromising grapevine carbon gain depend on climate change severity and wine-growing region
发表日期2024
ISSN0168-1923
EISSN1873-2240
起始页码347
卷号347
英文摘要Winegrapes are a valuable ($70 billion) commodity, but climate change is predicted to reduce grape yield and quality by exacerbating water and heat stress. Developing stress-resistant varieties would mitigate these impacts, but the trait values to target can be obscured by complex relationships between traits and plant performance. Stomatal traits mediate trade-offs between increasing gas exchange, to increase carbon assimilation and evaporative cooling, and reducing gas exchange, to avoid water stress. We used a functional-structural plant model to quantify the impacts of maximum stomatal conductance (gmax) and leaf water potential thresholds for 50 % stomatal closure (gs psi 50) on vine carbon gain, water stress, and temperature under historical and future conditions, assuming moderate and extreme climate change (Representative Concentration Pathways 4.5 and 8.5), for premium- and hot-climate US wine regions (Napa and the San Joaquin Valley (SJV)). Shifting from the mean trait values reported for winegrapes to water-saving values (i.e., a lower gmaxand less negative gs psi 50) reduced simulated vine transpiration and water stress below even historical levels, but the trait values that conserved water without compromising carbon gain varied between climate scenarios and regions. Extreme water-saving traits maintained carbon gain at or above historical levels in Napa under both scenarios, while intermediate water-saving traits maintained carbon gain under moderate climate change in the SJV. Vine canopy temperatures exceeded thresholds for photochemical heat damage in the SJV, regardless of the trait values. Overall, by reducing transpiration and water stress, water-saving traits would reduce irrigation demand and warming impacts on yield and quality, though more work is needed to determine whether historical carbon gain will remain adequate to support ripening, especially with heat-reducing management practices. Developing varieties with a range of water-saving trait values would provide plant material tailored to different regions and reduce the risk from uncertainty around future climate.
英文关键词Stomata; Climate change; Water-use efficiency; Viticulture; Grapes
语种英语
WOS研究方向Agriculture ; Forestry ; Meteorology & Atmospheric Sciences
WOS类目Agronomy ; Forestry ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001171804800001
来源期刊AGRICULTURAL AND FOREST METEOROLOGY
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/308279
作者单位INRAE; University of California System; University of California Davis
推荐引用方式
GB/T 7714
. The stomatal traits that conserve water without compromising grapevine carbon gain depend on climate change severity and wine-growing region[J],2024,347.
APA (2024).The stomatal traits that conserve water without compromising grapevine carbon gain depend on climate change severity and wine-growing region.AGRICULTURAL AND FOREST METEOROLOGY,347.
MLA "The stomatal traits that conserve water without compromising grapevine carbon gain depend on climate change severity and wine-growing region".AGRICULTURAL AND FOREST METEOROLOGY 347(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。