CCPortal
DOI10.3389/fenvs.2024.1377286
Climate change impacts on precipitation and water resources in Northwestern China
发表日期2024
EISSN2296-665X
起始页码12
卷号12
英文摘要A statistical analysis is conducted on the hourly precipitation at 105 national meteorological stations in the Xinjiang region of China from 2011 to 2020. The purpose of this analysis is to determine the total quantity of precipitation during the warm and cold seasons, as well as the precipitation frequency at each station. The results of the analysis indicate that there is a more pronounced inter-annual variation in precipitation during the warm and cold seasons in Xinjiang, where the total amount of precipitation during the warm season is significantly higher than that during the cold season, with the warm season experiencing at least twice as much precipitation. In terms of the inter-annual incremental amount of precipitation, both the warm and cold seasons exhibit a trend of increasing and then decreasing over the years. However, the curvature change is more prominent in the cold season compared to the warm season, suggesting that the inter-annual variation in precipitation during the warm season remains relatively stable. The spatial distribution characteristics of the total precipitation in Xinjiang indicate that warm-season precipitation is more scattered, while cold-season precipitation is mainly concentrated in the northern region of the territory. This pattern holds true at low, medium, medium-high, and high altitudes. The cumulative precipitation during the warm season is always higher than that in the cold season, and this difference becomes more prominent with increasing altitude. This indicates that warm-season precipitation in Xinjiang is closely related to its complex topographic structure, particularly the convective weather generated by topographic clouds. On the other hand, precipitation in the cold season is mainly concentrated in the low- and medium-altitude stations, and there is not much correlation between precipitation and altitude. Precipitation is mainly affected by the mesoscale and the direct influence of large-scale weather systems. Analysis of precipitation in extreme moments reveals that during the warm season, extreme precipitation events occur mainly from the evening to early morning (19:00-03:00 the next day), accounting for 75.24% of the 105 stations. In contrast, during the cold season, extreme precipitation events occur between 03:00 and 18:00, corresponding to 74.29% of the stations. The relationship between precipitation and altitude differs in the warm and cold seasons. In the warm season, there is a linear relationship between precipitation and altitude, with a slope of 0.72 and a correlation coefficient of 0.52, indicating that precipitation increases with increasing altitude. However, in the cold season, the linear relationship between precipitation and altitude is very inconspicuous, with a slope of -0.05 and a correlation coefficient of -0.05, suggesting that there is no significant relationship between precipitation and altitude during this season. These findings provide valuable insights into the changing patterns of precipitation gradients at different altitudes and seasons in Xinjiang. This information can be used for the site selection of smokestack operations in high-altitude areas and for ground and air weather modification operations in low-altitude areas. Additionally, these data contribute to the understanding of precipitation patterns in Xinjiang, further improving the effectiveness of weather modification efforts and increasing the utilization of airborne water resources.
英文关键词precipitation; spatial-temporal distribution; gradient; increased water potential; Xinjiang (China)
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Environmental Sciences
WOS记录号WOS:001216733000001
来源期刊FRONTIERS IN ENVIRONMENTAL SCIENCE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/306788
作者单位Nanjing University of Information Science & Technology
推荐引用方式
GB/T 7714
. Climate change impacts on precipitation and water resources in Northwestern China[J],2024,12.
APA (2024).Climate change impacts on precipitation and water resources in Northwestern China.FRONTIERS IN ENVIRONMENTAL SCIENCE,12.
MLA "Climate change impacts on precipitation and water resources in Northwestern China".FRONTIERS IN ENVIRONMENTAL SCIENCE 12(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。