CCPortal
DOI10.3390/agronomy14010216
Influence of Nitrogen Applications during Grain-Filling Stage on Rice (Oryza sativa L.) Yield and Grain Quality under High Temperature
Dou, Zhi; Zhou, Yicheng; Zhang, Yaoyuan; Guo, Wei; Xu, Qiang; Gao, Hui
发表日期2024
EISSN2073-4395
起始页码14
结束页码1
卷号14期号:1
英文摘要High temperature frequently occurs during rice's early grain-filling period in the south of China, negatively affecting rice yield and quality and posing a major threat to local rice production. This experiment researched the influence of 3.5 C-degrees warming during the first 20 grain-filling days on rice yield and quality and emphatically investigated the effects of the low-broadcast nitrogen fertilizer application level (LBN), high-broadcast nitrogen fertilizer application level (HBN) and foliar nitrogen fertilizer application (FN) at heading on the rice organ temperature, leaf photosynthesis, chlorophyll fluorescence, yield and grain quality, pasting and thermal properties under high temperature in 2020 and 2022, with a widely planted japonica rice variety, Wuyunjing31, in order to explore the practical mitigation measures for reducing the adverse impact of high temperature on rice productivity. The results showed that high temperatures during grain filling increased the rice plant temperature, damaged the chlorophyll fluorescence system and decreased the net photosynthesis rate. This led to a decline in the seed-setting rate and grain weight, resulting in a 7.0% and 13.9% yield loss in 2020 and 2022, respectively. In addition, high temperature caused a decline in the head rice rate and an increase in chalk occurrence and pasting temperature, thereby deteriorating rice grain quality. Under high temperatures, HBN enhanced the rice yield by 3.6% and 13.0% in 2020 and 2022, respectively, while FN enhanced the rice yield by 11.5% in 2022. The increase in yield was linked to the increased seed-setting rate and 1000-grain weight. LBN did not significantly affect the rice yield under high temperatures. The positive effects of nitrogen fertilizer measures on rice yield were associated with their role in lowering plant temperature and protection against the damage to the chlorophyll fluorescence system. All three nitrogen application measures generally improved rice milling quality and appearance quality under high temperature, with HBN generally showing the greatest impact. Under high temperature, LBN and FN tended to make the texture of cooked rice softer due to the decreased consistency, retrogradation enthalpy and retrogradation percentage, and this was closely associated with the decline in amylose content. In summary, nitrogen supplementation at the heading could efficiently mitigate the adverse impact of high temperature during the early grain-filling period on rice yield and quality.
英文关键词rice (Oryza sativa L.); high temperature during grain filling; nitrogen application at heading; yield; leaf photosynthesis; grain quality
语种英语
WOS研究方向Agriculture ; Plant Sciences
WOS类目Agronomy ; Plant Sciences
WOS记录号WOS:001151708400001
来源期刊AGRONOMY-BASEL
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/306406
作者单位Yangzhou University; Yangzhou University; Yangzhou University; Shanghai Academy of Agricultural Sciences
推荐引用方式
GB/T 7714
Dou, Zhi,Zhou, Yicheng,Zhang, Yaoyuan,et al. Influence of Nitrogen Applications during Grain-Filling Stage on Rice (Oryza sativa L.) Yield and Grain Quality under High Temperature[J],2024,14(1).
APA Dou, Zhi,Zhou, Yicheng,Zhang, Yaoyuan,Guo, Wei,Xu, Qiang,&Gao, Hui.(2024).Influence of Nitrogen Applications during Grain-Filling Stage on Rice (Oryza sativa L.) Yield and Grain Quality under High Temperature.AGRONOMY-BASEL,14(1).
MLA Dou, Zhi,et al."Influence of Nitrogen Applications during Grain-Filling Stage on Rice (Oryza sativa L.) Yield and Grain Quality under High Temperature".AGRONOMY-BASEL 14.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dou, Zhi]的文章
[Zhou, Yicheng]的文章
[Zhang, Yaoyuan]的文章
百度学术
百度学术中相似的文章
[Dou, Zhi]的文章
[Zhou, Yicheng]的文章
[Zhang, Yaoyuan]的文章
必应学术
必应学术中相似的文章
[Dou, Zhi]的文章
[Zhou, Yicheng]的文章
[Zhang, Yaoyuan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。