CCPortal
DOI10.3390/min14030270
Characteristics of Weathering Reservoirs and Differences in Fracture Formation in the Weathering Crust of the Pre-Cenozoic Basement of Lishui Sag, East China Sea Basin, China
发表日期2024
EISSN2075-163X
起始页码14
结束页码3
卷号14期号:3
英文摘要Fractures are the main reservoir space in basement weathering crusts and control the development of dissolution/alteration pores. A clear understanding of the main factors controlling fracture formation is needed to accurately predict reservoir characteristics. In this study, the reservoir characteristics along with the vertical zonation and thermal history of basement weathering crust were studied through lithology, mineral identification, porosity and permeability tests, nuclear magnetic resonance (T2), whole-rock analysis, and fission-track dating based on core samples, cuttings, and imaging logging data. Under the constraints of the Anderson model, the formation stages and timing of fractures were analyzed according to the regional stress field, fracture strike, fracture filling characteristics, and rock mechanical properties. The results revealed tensile structural fractures, shear structural fractures, weathering micro-fractures, alteration fractures, and intracrystalline alteration pores in the weathering crust of the Pre-Cenozoic basement in Lishui Sag. The reservoirs were characterized by low porosity, low permeability, and small pore diameter. The reservoir quality of granite was better than that of gneiss. The weathering crust could be divided into four zones: the soil layer, weathering dissolution zone, weathering fracture zone, and bedrock zone. The thickness of the soil layer and weathering dissolution zone were small. Four stages of fractures were identified: Yandang movement shear fractures, Paleocene tension structural fractures, Huagang movement shear fractures, and Longjing movement shear fractures. The main stage of basement fracture formation differed between the Lingfeng buried hill zone and Xianqiao structural zone. Considering the influence of the temperature and pressure environment on the rock's mechanical properties, the differential fracture formation is related to the lithology, the coupling between the uplifted and exposed basement histories, and the tectonic stress field. Combined with the thermal histories of the Lingfeng buried hill zone and Xianqiao structural zone, the results suggest that the Lingfeng buried hill granite is favorable for basement fractures in Lishui Sag. Overall, this paper provides a novel method for analyzing the stages of fracture formation.
英文关键词East China Sea Basin; granite; weathering reservoir; fracture stages; difference in fracture formation; reservoir distribution model
语种英语
WOS研究方向Geochemistry & Geophysics ; Mineralogy ; Mining & Mineral Processing
WOS类目Geochemistry & Geophysics ; Mineralogy ; Mining & Mineral Processing
WOS记录号WOS:001192432300001
来源期刊MINERALS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/303648
作者单位China National Offshore Oil Corporation (CNOOC); Jilin University
推荐引用方式
GB/T 7714
. Characteristics of Weathering Reservoirs and Differences in Fracture Formation in the Weathering Crust of the Pre-Cenozoic Basement of Lishui Sag, East China Sea Basin, China[J],2024,14(3).
APA (2024).Characteristics of Weathering Reservoirs and Differences in Fracture Formation in the Weathering Crust of the Pre-Cenozoic Basement of Lishui Sag, East China Sea Basin, China.MINERALS,14(3).
MLA "Characteristics of Weathering Reservoirs and Differences in Fracture Formation in the Weathering Crust of the Pre-Cenozoic Basement of Lishui Sag, East China Sea Basin, China".MINERALS 14.3(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。