CCPortal
DOI10.1007/s11869-024-01568-5
OzoneNet:A spatiotemporal information attention encoder model for ozone concentrations prediction with multi-source data
Tian, Wei; Ge, Zhongqi; He, Jianjun
发表日期2024
ISSN1873-9318
EISSN1873-9326
英文摘要Surface ozone (O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_3$$\end{document}) pollution is a serious environmental problem that endangers human health, and it is also an increasingly prominent environmental problem in the World. Existing works focus on how to directly improve the accuracy of predicting the target sequence from the input sequence while ignoring the inherent uncertainty of ozone in the atmosphere during the modeling process. Therefore, we utilize data fusion techniques to integrate ground observation data, satellite data, and reanalysis data for simulating atmospheric dynamics and enhancing prediction accuracy. We developed a sequence to sequence using a unit embedded with spatiotemporal information self attention mechanism as its encoder (OzoneNet) predict ozone concentration in the future. In the proposed method, we utilize the LSTM model with Spatiotemporal information self-attention mechanism to extract fixed Spatiotemporal data features, and the temporal dimension characteristics in long-term series are modeled by sequence-to-sequence network. Results show that the model has higher reliability and validity, outperforming benchmark models in simulating future changes in O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_3$$\end{document} concentrations. The progeress of this method can help the public take corresponding protective measures, provide scientific guidance for the government's coordinated control of regional pollution, and can also provide important references for environmental protection and climate change research
英文关键词Ozone concentration prediction; LSTM; Spatiotemporal information self-attention mechanism
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Environmental Sciences
WOS记录号WOS:001220451700001
来源期刊AIR QUALITY ATMOSPHERE AND HEALTH
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/301581
作者单位Nanjing University of Information Science & Technology; China Meteorological Administration; Chinese Academy of Meteorological Sciences (CAMS); China Meteorological Administration; Chinese Academy of Meteorological Sciences (CAMS)
推荐引用方式
GB/T 7714
Tian, Wei,Ge, Zhongqi,He, Jianjun. OzoneNet:A spatiotemporal information attention encoder model for ozone concentrations prediction with multi-source data[J],2024.
APA Tian, Wei,Ge, Zhongqi,&He, Jianjun.(2024).OzoneNet:A spatiotemporal information attention encoder model for ozone concentrations prediction with multi-source data.AIR QUALITY ATMOSPHERE AND HEALTH.
MLA Tian, Wei,et al."OzoneNet:A spatiotemporal information attention encoder model for ozone concentrations prediction with multi-source data".AIR QUALITY ATMOSPHERE AND HEALTH (2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tian, Wei]的文章
[Ge, Zhongqi]的文章
[He, Jianjun]的文章
百度学术
百度学术中相似的文章
[Tian, Wei]的文章
[Ge, Zhongqi]的文章
[He, Jianjun]的文章
必应学术
必应学术中相似的文章
[Tian, Wei]的文章
[Ge, Zhongqi]的文章
[He, Jianjun]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。