Climate Change Data Portal
DOI | 10.1007/s11869-024-01568-5 |
OzoneNet:A spatiotemporal information attention encoder model for ozone concentrations prediction with multi-source data | |
Tian, Wei; Ge, Zhongqi; He, Jianjun | |
发表日期 | 2024 |
ISSN | 1873-9318 |
EISSN | 1873-9326 |
英文摘要 | Surface ozone (O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_3$$\end{document}) pollution is a serious environmental problem that endangers human health, and it is also an increasingly prominent environmental problem in the World. Existing works focus on how to directly improve the accuracy of predicting the target sequence from the input sequence while ignoring the inherent uncertainty of ozone in the atmosphere during the modeling process. Therefore, we utilize data fusion techniques to integrate ground observation data, satellite data, and reanalysis data for simulating atmospheric dynamics and enhancing prediction accuracy. We developed a sequence to sequence using a unit embedded with spatiotemporal information self attention mechanism as its encoder (OzoneNet) predict ozone concentration in the future. In the proposed method, we utilize the LSTM model with Spatiotemporal information self-attention mechanism to extract fixed Spatiotemporal data features, and the temporal dimension characteristics in long-term series are modeled by sequence-to-sequence network. Results show that the model has higher reliability and validity, outperforming benchmark models in simulating future changes in O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_3$$\end{document} concentrations. The progeress of this method can help the public take corresponding protective measures, provide scientific guidance for the government's coordinated control of regional pollution, and can also provide important references for environmental protection and climate change research |
英文关键词 | Ozone concentration prediction; LSTM; Spatiotemporal information self-attention mechanism |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology |
WOS类目 | Environmental Sciences |
WOS记录号 | WOS:001220451700001 |
来源期刊 | AIR QUALITY ATMOSPHERE AND HEALTH
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/301581 |
作者单位 | Nanjing University of Information Science & Technology; China Meteorological Administration; Chinese Academy of Meteorological Sciences (CAMS); China Meteorological Administration; Chinese Academy of Meteorological Sciences (CAMS) |
推荐引用方式 GB/T 7714 | Tian, Wei,Ge, Zhongqi,He, Jianjun. OzoneNet:A spatiotemporal information attention encoder model for ozone concentrations prediction with multi-source data[J],2024. |
APA | Tian, Wei,Ge, Zhongqi,&He, Jianjun.(2024).OzoneNet:A spatiotemporal information attention encoder model for ozone concentrations prediction with multi-source data.AIR QUALITY ATMOSPHERE AND HEALTH. |
MLA | Tian, Wei,et al."OzoneNet:A spatiotemporal information attention encoder model for ozone concentrations prediction with multi-source data".AIR QUALITY ATMOSPHERE AND HEALTH (2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。