Climate Change Data Portal
DOI | 10.3390/w16070960 |
Assessment of Sediments' Transport Triggering Processes through the Identification of Deposition Shapes in Large Reservoirs | |
Molina, Jose-Luis; Espejo, Fernando; Zazo, Santiago; Diez-Castro, Teresa; Mongil-Manso, Jorge; Nespereira, Jose; Patino-Alonso, Carmen; Silla, Fernando | |
发表日期 | 2024 |
EISSN | 2073-4441 |
起始页码 | 16 |
结束页码 | 7 |
卷号 | 16期号:7 |
英文摘要 | Sediment deposition at the bottom of artificial reservoirs has become a worldwide problem. This comprises a dual issue that is, in the first place, associated with the reduction in storage capacity and lifetime of large reservoirs. The second aspect comprises the threat that the sediment represents for the dam structure. This research is mainly aimed at identifying and inferring the main sediments' triggering processes through a rigorous analysis of deposition shapes in a large reservoir. For identifying the main deposition shapes, a sequential methodology was designed and developed comprising the following stages. First, an analysis of XYZ cartography from bathymetric development was conducted. Then, a shapes categorization was developed that comprises the identification of six types of shapes based on four parameters: slope continuity, slope break, absolute and relative slope, and arc configuration. The third stage comprised a visualization and spatial calculation of shapes through GIS-based cartography. The fourth stage comprised an interpretation of deposition shapes processes: for that, a dual analysis was developed. First, an analysis based on fluvial sediments transport processes was realized. The second stage implied an analysis of the dam influence on fluvial hydrodynamics and sediments transport. Results comprised a quantitative assessment of each shape as well as physical processes identification and interpretation, generating a robust equivalence between shapes and triggering processes. This research proved successful for the identification and characterization of the main deposition and transport processes that may help to prevent, palliate, and/or correct phenomenon of silting in large reservoirs. This detailed knowledge of deposition forms opens new strategies to release sediments from storage water more effectively. |
英文关键词 | sediments; reservoirs silting; shapes; hydrodynamics; triggering processes |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Water Resources |
WOS类目 | Environmental Sciences ; Water Resources |
WOS记录号 | WOS:001200985100001 |
来源期刊 | WATER
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/299284 |
作者单位 | University of Salamanca; Santa Teresa Jesus Catholic University of Avila; University of Salamanca; University of Salamanca; University of Salamanca |
推荐引用方式 GB/T 7714 | Molina, Jose-Luis,Espejo, Fernando,Zazo, Santiago,et al. Assessment of Sediments' Transport Triggering Processes through the Identification of Deposition Shapes in Large Reservoirs[J],2024,16(7). |
APA | Molina, Jose-Luis.,Espejo, Fernando.,Zazo, Santiago.,Diez-Castro, Teresa.,Mongil-Manso, Jorge.,...&Silla, Fernando.(2024).Assessment of Sediments' Transport Triggering Processes through the Identification of Deposition Shapes in Large Reservoirs.WATER,16(7). |
MLA | Molina, Jose-Luis,et al."Assessment of Sediments' Transport Triggering Processes through the Identification of Deposition Shapes in Large Reservoirs".WATER 16.7(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。