CCPortal
DOI10.1016/j.envsoft.2024.105969
A secondary modal decomposition ensemble deep learning model for groundwater level prediction using multi-data
Cui, Xuefei; Wang, Zhaocai; Xu, Nannan; Wu, Junhao; Yao, Zhiyuan
发表日期2024
ISSN1364-8152
EISSN1873-6726
起始页码175
卷号175
英文摘要Groundwater level (GWL) prediction is important for ecological protection and resource utilization; it helps in formulating policies for artificial groundwater recharge, modifying the number of extraction wells, etc., and can support sustainable human development as well as inform water resource management decisions. However, climate change, anthropogenic impacts, and the complex coupling between surface water and groundwater increase the difficulty of predicting groundwater levels. The model proposed in this paper combines external data as well as multiple models. The method leverages long and short-term memory (LSTM) and convolutional neural network (CNN) models, combined with secondary modal decomposition and slime mould algorithm (SMA), together with an adaptive weight module (AWM). The study applies this method to predict GWL for three different hydrological conditions in China, specifically for the Jinan Baotu Spring, Heihu Spring, and Zhongtianshe watershed of Taihu Lake. A comparison of metrics such as mean absolute error and Nash efficiency coefficient for single and hybrid models shows that the model in this paper is more advantageous than the single model and other hybrid models. The interpretability of the model is enhanced by SHAP values that demonstrate the degree of contribution of the input variables. This paper uses SHAP analyses to identify the key drivers affecting groundwater levels. These factors must be detected in order to develop groundwater resource protection measures.
英文关键词Groundwater level prediction; Slime mould algorithm; Secondary modal decomposition; Convolutional neural network; Long short-term memory; Adaptive weight module
语种英语
WOS研究方向Computer Science ; Engineering ; Environmental Sciences & Ecology ; Water Resources
WOS类目Computer Science, Interdisciplinary Applications ; Engineering, Environmental ; Environmental Sciences ; Water Resources
WOS记录号WOS:001199542100001
来源期刊ENVIRONMENTAL MODELLING & SOFTWARE
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/296521
作者单位Shanghai Ocean University; Shanghai Ocean University; East China Normal University
推荐引用方式
GB/T 7714
Cui, Xuefei,Wang, Zhaocai,Xu, Nannan,et al. A secondary modal decomposition ensemble deep learning model for groundwater level prediction using multi-data[J],2024,175.
APA Cui, Xuefei,Wang, Zhaocai,Xu, Nannan,Wu, Junhao,&Yao, Zhiyuan.(2024).A secondary modal decomposition ensemble deep learning model for groundwater level prediction using multi-data.ENVIRONMENTAL MODELLING & SOFTWARE,175.
MLA Cui, Xuefei,et al."A secondary modal decomposition ensemble deep learning model for groundwater level prediction using multi-data".ENVIRONMENTAL MODELLING & SOFTWARE 175(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cui, Xuefei]的文章
[Wang, Zhaocai]的文章
[Xu, Nannan]的文章
百度学术
百度学术中相似的文章
[Cui, Xuefei]的文章
[Wang, Zhaocai]的文章
[Xu, Nannan]的文章
必应学术
必应学术中相似的文章
[Cui, Xuefei]的文章
[Wang, Zhaocai]的文章
[Xu, Nannan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。