CCPortal
DOI10.1109/ACCESS.2024.3390408
Carbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithm
Feda, Afi Kekeli; Adegboye, Oluwatayomi Rereloluwa; Agyekum, Ephraim Bonah; Shuaibu Hassan, Abdurrahman; Kamel, Salah
发表日期2024
ISSN2169-3536
起始页码12
卷号12
英文摘要This research introduces a novel optimization algorithm, weIghted meaN oF vectOrs (INFO), integrated with the Extreme Learning Machine (ELM) to enhance the predictive capabilities of the model for carbon dioxide (CO2) emissions. INFO optimizes ELM's weight and bias. In six classic test problems and CEC 2019 functions, INFO demonstrated notable strengths in achieving optimal solutions for various functions. The proposed hybrid model, ELM-INFO, exhibits superior performance in forecasting CO2 emissions, as substantiated by rigorous evaluation metrics. Notably, it achieves a superior R2 value of 0.9742, alongside minimal values in Root Mean Squared Error (RMSE) at 0.01937, Mean Squared Error (MSE) at 0.00037, Mean Absolute Error (MAE) at 0.0136, and Mean Absolute Percentage Error (MAPE) at 0.0060. These outcomes underscore the robustness of ELM-INFO in accurately predicting CO2 emissions within the testing dataset. Additionally, economic growth is the most significant element, as indicated by ELM-INFO's permutation significance analysis, which causes the model's MSE to increase by 19%. Trade openness and technological innovation come next, each adding 7.6% and 8.1% to the model's MSE increase, respectively. According to ELM-INFO's performance, it's a powerful tool for developing ecologically sound policies that improve environmental resilience and sustainability.
英文关键词Artificial neural network; carbon emission prediction; convergence acceleration; extreme learning machine; metaheuristic algorithms
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:001214261900001
来源期刊IEEE ACCESS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/295229
作者单位Lefke Avrupa University; Ural Federal University; Egyptian Knowledge Bank (EKB); Aswan University
推荐引用方式
GB/T 7714
Feda, Afi Kekeli,Adegboye, Oluwatayomi Rereloluwa,Agyekum, Ephraim Bonah,et al. Carbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithm[J],2024,12.
APA Feda, Afi Kekeli,Adegboye, Oluwatayomi Rereloluwa,Agyekum, Ephraim Bonah,Shuaibu Hassan, Abdurrahman,&Kamel, Salah.(2024).Carbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithm.IEEE ACCESS,12.
MLA Feda, Afi Kekeli,et al."Carbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithm".IEEE ACCESS 12(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feda, Afi Kekeli]的文章
[Adegboye, Oluwatayomi Rereloluwa]的文章
[Agyekum, Ephraim Bonah]的文章
百度学术
百度学术中相似的文章
[Feda, Afi Kekeli]的文章
[Adegboye, Oluwatayomi Rereloluwa]的文章
[Agyekum, Ephraim Bonah]的文章
必应学术
必应学术中相似的文章
[Feda, Afi Kekeli]的文章
[Adegboye, Oluwatayomi Rereloluwa]的文章
[Agyekum, Ephraim Bonah]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。