CCPortal
DOI10.1016/j.pce.2024.103592
Anomalies identification in Smart Water Metering Networks: Fostering improved water efficiency
Kanyama, Maria Nelago; Shava, Fungai Bhunu; Gamundani, Attle M.; Hartmann, Andreas
发表日期2024
ISSN1474-7065
EISSN1873-5193
起始页码134
卷号134
英文摘要Smart Water Metering Networks (SWMNs) stand as pivotal infrastructure, crucial for communities and industries. The escalating value of water resources due to climate change and overexploitation underscores the urgency of optimizing these networks for efficiency and resilience. This study focuses on identifying anomalies within SWMNs to address challenges impeding efficient water resource management. Leveraging a comprehensive 72month dataset from Windhoek, Namibia, this research employs a meticulous analytical approach to unveil diverse anomaly types prevalent within SWMNs. Anomalies, including irregular consumption patterns, leakages, and inaccurate meters, contribute significantly to both apparent and real losses. By scrutinizing this dataset, the study reveals nuanced anomaly patterns like persistent zero consumption and unexpected fluctuations, highlighting the pervasive nature of these issues within the network. The findings not only shed light on these multifaceted anomalies but also lay the groundwork for future advancements in machine learning -based anomaly detection techniques. This research holds promise beyond academia, offering practical implications for water utility management. Identifying and understanding these anomalies serves as a stepping stone toward developing robust detection systems, ultimately fostering heightened efficiency and resilience in water networks. This study serves as a catalyst for strategic improvements, enabling more sustainable and efficient utilization of water resources amidst evolving environmental challenges.
英文关键词Anomalies; Anomaly identification; Water efficiency; Water metering networks
语种英语
WOS研究方向Geology ; Meteorology & Atmospheric Sciences ; Water Resources
WOS类目Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences ; Water Resources
WOS记录号WOS:001229112100001
来源期刊PHYSICS AND CHEMISTRY OF THE EARTH
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/294389
作者单位Technische Universitat Dresden
推荐引用方式
GB/T 7714
Kanyama, Maria Nelago,Shava, Fungai Bhunu,Gamundani, Attle M.,et al. Anomalies identification in Smart Water Metering Networks: Fostering improved water efficiency[J],2024,134.
APA Kanyama, Maria Nelago,Shava, Fungai Bhunu,Gamundani, Attle M.,&Hartmann, Andreas.(2024).Anomalies identification in Smart Water Metering Networks: Fostering improved water efficiency.PHYSICS AND CHEMISTRY OF THE EARTH,134.
MLA Kanyama, Maria Nelago,et al."Anomalies identification in Smart Water Metering Networks: Fostering improved water efficiency".PHYSICS AND CHEMISTRY OF THE EARTH 134(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kanyama, Maria Nelago]的文章
[Shava, Fungai Bhunu]的文章
[Gamundani, Attle M.]的文章
百度学术
百度学术中相似的文章
[Kanyama, Maria Nelago]的文章
[Shava, Fungai Bhunu]的文章
[Gamundani, Attle M.]的文章
必应学术
必应学术中相似的文章
[Kanyama, Maria Nelago]的文章
[Shava, Fungai Bhunu]的文章
[Gamundani, Attle M.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。