CCPortal
DOI10.3390/app14010396
Progressing towards Estimates of Local Emissions from Trees in Cities: A Transdisciplinary Framework Integrating Available Municipal Data, AI, and Citizen Science
Mayer, Julia; Memmel, Martin; Ruf, Johannes; Patel, Dhruv; Hoff, Lena; Henninger, Sascha
发表日期2024
EISSN2076-3417
起始页码14
结束页码1
卷号14期号:1
英文摘要Urban tree cadastres, crucial for climate adaptation and urban planning, face challenges in maintaining accuracy and completeness. A transdisciplinary approach in Kaiserslautern, Germany, complements existing incomplete tree data with additional precise GPS locations of urban trees. Deep learning models using aerial imagery identify trees, while other applications employ street view imagery and LIDAR data to collect additional attributes, such as height and crown width. A web application encourages citizen participation in adding features like species and improving datasets for further model training. The initiative aims to minimize resource-intensive maintenance conducted by local administrations, integrate additional features, and improve data quality. Its primary goal is to create transferable AI models utilizing aerial imagery and LIDAR data that can be applied in regions with similar tree populations. The approach includes tree clusters and private trees, which are essential for assessing allergy and ozone potential but are usually not recorded in municipal tree cadastres. The paper highlights the potential of improving tree cadastres for effective urban planning in a transdisciplinary approach, taking into account climate change, health, and public engagement.
英文关键词urban tree cadastre; deep learning; data quality; AI; open source; urban planning; urban data; citizen science; local emissions; microclimate
语种英语
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:001139259300001
来源期刊APPLIED SCIENCES-BASEL
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/294142
作者单位German Research Center for Artificial Intelligence (DFKI)
推荐引用方式
GB/T 7714
Mayer, Julia,Memmel, Martin,Ruf, Johannes,et al. Progressing towards Estimates of Local Emissions from Trees in Cities: A Transdisciplinary Framework Integrating Available Municipal Data, AI, and Citizen Science[J],2024,14(1).
APA Mayer, Julia,Memmel, Martin,Ruf, Johannes,Patel, Dhruv,Hoff, Lena,&Henninger, Sascha.(2024).Progressing towards Estimates of Local Emissions from Trees in Cities: A Transdisciplinary Framework Integrating Available Municipal Data, AI, and Citizen Science.APPLIED SCIENCES-BASEL,14(1).
MLA Mayer, Julia,et al."Progressing towards Estimates of Local Emissions from Trees in Cities: A Transdisciplinary Framework Integrating Available Municipal Data, AI, and Citizen Science".APPLIED SCIENCES-BASEL 14.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mayer, Julia]的文章
[Memmel, Martin]的文章
[Ruf, Johannes]的文章
百度学术
百度学术中相似的文章
[Mayer, Julia]的文章
[Memmel, Martin]的文章
[Ruf, Johannes]的文章
必应学术
必应学术中相似的文章
[Mayer, Julia]的文章
[Memmel, Martin]的文章
[Ruf, Johannes]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。