CCPortal
DOI10.1016/j.epsr.2024.110299
Variational data augmentation for a learning-based granular predictive model of
Zhao, Tianqiao; Yue, Meng; Jensen, Michael; Endo, Satoshi; Marschilok, Amy C.; Nugent, Brian; Cerruti, Brian; Spanos, Constantine
发表日期2024
ISSN0378-7796
EISSN1873-2046
起始页码232
卷号232
英文摘要As the trend in climate change continues, extreme weather events are expected to occur with increasing frequency and severity and pose a significant threat to the electric power infrastructure. Regardless of the efforts a utility puts towards hardening the grid, storm-induced damage to the utility assets such as cables and distributed energy resources (DERs) that are particularly vulnerable to such events is unavoidable. Access to a highly granular, in space and time, outage forecasting tool with long lead times (i.e., days ahead) will enhance the efficiency of service restoration efforts. In this study, we propose to develop and implement a multi -model framework as an operational tool based on a granular and multi -day outage forecasting model using operational numerical weather prediction model forecasts and detailed component outage information. An innovative two-layered recurrent neural network, i.e., a long-short-term-memory (LSTM)-based variational autoencoder (VAE) framework and a sliding window are used to address the uneven distribution of different types of weather events and make better use of the time -series data. Case studies are performed to demonstrate the performance of the new framework.
英文关键词Variational data augmentation; Outage prediction; Variational autoencoder; Recurrent neural networks; Weather-related outages
语种英语
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:001235050800001
来源期刊ELECTRIC POWER SYSTEMS RESEARCH
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/293975
作者单位United States Department of Energy (DOE); Brookhaven National Laboratory
推荐引用方式
GB/T 7714
Zhao, Tianqiao,Yue, Meng,Jensen, Michael,et al. Variational data augmentation for a learning-based granular predictive model of[J],2024,232.
APA Zhao, Tianqiao.,Yue, Meng.,Jensen, Michael.,Endo, Satoshi.,Marschilok, Amy C..,...&Spanos, Constantine.(2024).Variational data augmentation for a learning-based granular predictive model of.ELECTRIC POWER SYSTEMS RESEARCH,232.
MLA Zhao, Tianqiao,et al."Variational data augmentation for a learning-based granular predictive model of".ELECTRIC POWER SYSTEMS RESEARCH 232(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Tianqiao]的文章
[Yue, Meng]的文章
[Jensen, Michael]的文章
百度学术
百度学术中相似的文章
[Zhao, Tianqiao]的文章
[Yue, Meng]的文章
[Jensen, Michael]的文章
必应学术
必应学术中相似的文章
[Zhao, Tianqiao]的文章
[Yue, Meng]的文章
[Jensen, Michael]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。