Climate Change Data Portal
DOI | 10.3389/ffgc.2024.1324405 |
Morphological responses of root hairs to changes in soil and climate depend on plant life form | |
Zhou, Yingtong; Wang, Cunguo; Tang, Qinrong; Wang, Junni; Li, Mai-He | |
发表日期 | 2024 |
EISSN | 2624-893X |
起始页码 | 7 |
卷号 | 7 |
英文摘要 | Introduction Root hairs increase the surface area of a plant's root system that is in contact with the soil, thus facilitating plant water and nutrient uptake. However, little is known about the characteristics of the root hairs of herbaceous and woody plants and their specific response patterns to biotic and abiotic variables from the perspective of resource acquisition strategies in the context of global change.Methods Here, we analyzed 74 published case studies with 1074 observations of root hair traits to identify patterns of root hair length, density and diameter in relation to soil (e.g., soil pH, nutrient levels), growing environments (e.g., greenhouse, field) and climatic factors (e.g., air temperature), as well as genome size and plant age.Results Root hairs were longer, denser and thicker in woody plants compared with herbaceous plants, and the length and diameter of root hairs in herbaceous plants increased with genome size. With increasing plant age, woody plants had significantly longer and thicker root hairs, while root hair density and diameter declined significantly for herbaceous plants. Soil-cultured plants had longer root hairs than solution-cultured plants. The length and density of root hairs were greater in greenhouse-cultured plants than in field-grown plants, and the latter had thicker root hairs than the former. As soil pH increased, root hair length increased but diameter decreased in woody plants, while root hair density increased in herbaceous plants. Increased soil total nitrogen (N) and potassium (K) significantly increased root hair length, density and diameter in herbaceous plants, while soil total N significantly decreased root hair density in woody plants. Root hair length increased significantly, while root hair density decreased significantly, with higher mean annual temperature and greater precipitation seasonality, while the opposite pattern was true for a wider annual temperature range.Discussion Our findings emphasize the life-form-specific responses of root hairs to soil and climatic variables. These findings will help deepen our understanding of resource acquisition strategies and their mechanisms in different plant forms under global climate change. |
英文关键词 | climate change; life form; nitrogen; root hair morphology; soil nutrient; water |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Forestry |
WOS类目 | Ecology ; Forestry |
WOS记录号 | WOS:001222476200001 |
来源期刊 | FRONTIERS IN FORESTS AND GLOBAL CHANGE
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/291444 |
作者单位 | Northeast Normal University - China; Swiss Federal Institutes of Technology Domain; Swiss Federal Institute for Forest, Snow & Landscape Research; Hebei University |
推荐引用方式 GB/T 7714 | Zhou, Yingtong,Wang, Cunguo,Tang, Qinrong,et al. Morphological responses of root hairs to changes in soil and climate depend on plant life form[J],2024,7. |
APA | Zhou, Yingtong,Wang, Cunguo,Tang, Qinrong,Wang, Junni,&Li, Mai-He.(2024).Morphological responses of root hairs to changes in soil and climate depend on plant life form.FRONTIERS IN FORESTS AND GLOBAL CHANGE,7. |
MLA | Zhou, Yingtong,et al."Morphological responses of root hairs to changes in soil and climate depend on plant life form".FRONTIERS IN FORESTS AND GLOBAL CHANGE 7(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。