CCPortal
DOI10.1186/s13717-024-00515-7
Prediction of soil organic carbon stock combining Sentinel-1 and Sentinel-2 images in the Zoige Plateau, the northeastern Qinghai-Tibet Plateau
Lei, Junjie; Zeng, Changli; Zhang, Lv; Wang, Xiaogang; Ma, Chanhua; Zhou, Tao; Laffitte, Benjamin; Luo, Ke; Yang, Zhihan; Tang, Xiaolu
发表日期2024
EISSN2192-1709
起始页码13
结束页码1
卷号13期号:1
英文摘要Background Soil organic carbon (SOC) is a critical component of the global carbon cycle, and an accurate estimate of regional SOC stock (SOCS) would significantly improve our understanding of SOC sequestration and cycles. Zoige Plateau, locating in the northeastern Qinghai-Tibet Plateau, has the largest alpine marsh wetland worldwide and exhibits a high sensitivity to climate fluctuations. Despite an increasing use of optical remote sensing in predicting regional SOCS, optical remote sensing has obvious limitations in the Zoige Plateau due to highly cloudy weather, and knowledge of on the spatial patterns of SOCS is limited. Therefore, in the current study, the spatial distributions of SOCS within 100 cm were predicted using an XGBoost model-a machine learning approach, by integrating Sentinel-1, Sentinel-2 and field observations in the Zoige Plateau.Results The results showed that SOC content exhibited vertical distribution patterns within 100 cm, with the highest SOC content in topsoil. The tenfold cross-validation approach showed that XGBoost model satisfactorily predicted the spatial patterns of SOCS with a model efficiency of 0.59 and a root mean standard error of 95.2 Mg ha-1. Predicted SOCS showed a distinct spatial heterogeneity in the Zoige Plateau, with an average of 355.7 +/- 123.1 Mg ha-1 within 100 cm and totaled 0.27 x 109 Mg carbon.Conclusions High SOC content in topsoil highlights the high risks of significant carbon loss from topsoil due to human activities in the Zoige Plateau. Combining Sentinel-1 and Sentinel-2 satisfactorily predicted SOCS using the XGBoost model, which demonstrates the importance of selecting modeling approaches and satellite images to improve efficiency in predicting SOCS distribution at a fine spatial resolution of 10 m. Furthermore, the study emphasizes the potential of radar (Sentinel-1) in developing SOCS mapping, with the newly developed fine-resolution mapping having important applications in land management, ecological restoration, and protection efforts in the Zoige Plateau.
英文关键词SOC; Vegetation index; Texture; XGBoost; Sentinel-1; Sentinel-2
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Ecology ; Environmental Sciences
WOS记录号WOS:001215975800001
来源期刊ECOLOGICAL PROCESSES
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/291426
作者单位Chengdu University of Technology; Chengdu University of Technology; Tianfu Yongxing Laboratory
推荐引用方式
GB/T 7714
Lei, Junjie,Zeng, Changli,Zhang, Lv,et al. Prediction of soil organic carbon stock combining Sentinel-1 and Sentinel-2 images in the Zoige Plateau, the northeastern Qinghai-Tibet Plateau[J],2024,13(1).
APA Lei, Junjie.,Zeng, Changli.,Zhang, Lv.,Wang, Xiaogang.,Ma, Chanhua.,...&Tang, Xiaolu.(2024).Prediction of soil organic carbon stock combining Sentinel-1 and Sentinel-2 images in the Zoige Plateau, the northeastern Qinghai-Tibet Plateau.ECOLOGICAL PROCESSES,13(1).
MLA Lei, Junjie,et al."Prediction of soil organic carbon stock combining Sentinel-1 and Sentinel-2 images in the Zoige Plateau, the northeastern Qinghai-Tibet Plateau".ECOLOGICAL PROCESSES 13.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lei, Junjie]的文章
[Zeng, Changli]的文章
[Zhang, Lv]的文章
百度学术
百度学术中相似的文章
[Lei, Junjie]的文章
[Zeng, Changli]的文章
[Zhang, Lv]的文章
必应学术
必应学术中相似的文章
[Lei, Junjie]的文章
[Zeng, Changli]的文章
[Zhang, Lv]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。