CCPortal
DOI10.1590/1983-40632024v5477917
Irrigation demand for fruit trees under a climate change scenario using artificial intelligence1
Battisti, Rafael; Neto, Waldemiro Alcantara da Silva; da Costa, Ronaldo Martins; Dapper, Felipe Puff; Elli, Elvis Felipe
发表日期2024
ISSN1517-6398
EISSN1983-4063
起始页码54
卷号54
英文摘要Fruit growing, especially in family farming, has a significant income potential in small areas, but climate change is a major challenge. This study aimed to quantify the irrigation requirements for citrus, papaya, mango and passion fruit, in the Vao do Parana region, Goias state, Brazil. The climate data encompassed the observed periods from 1961 to 2020 and future scenarios from 2021 to 2100. The irrigation demand was obtained from the daily water balance, while the reference evapotranspiration (ETo) was estimated using the Penman-Monteith method and then compared with an artificial intelligence tool. The future scenarios indicated a higher increase for air temperature and a lower increase for rainfall. The ETo levels raised from 1,528 mm year(-1), in 1991-2020, to 1,614-1,656 mm year(-1), in 2021-2050. The artificial intelligence performance was limited in the ETo estimation, with a mean absolute error of 0.71 mm day(-1) and an r value of 0.59, when considering the air temperature as the input variable. For the 2021-2050 period, when compared with 1991-2020, there was an increase in irrigation demand, in which, under the extreme scenario, the citrus demand reached 690 mm year(-1) (+11 %); papaya (+10 %) and passion fruit (+5 %) surpassed 800 mm year(-1); and mango reached 491 mm year(-1) (+14 %). An increase in demand for irrigation was observed, with management alternatives in association with strategies for maximum cultivation area based on water supply being recommended.
英文关键词Climate resilience; water demand; machine learning; future climate scenarios
语种英语
WOS研究方向Agriculture ; Food Science & Technology
WOS类目Agriculture, Multidisciplinary ; Food Science & Technology
WOS记录号WOS:001194184600001
来源期刊PESQUISA AGROPECUARIA TROPICAL
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/288820
作者单位Universidade Federal de Goias; Universidade Federal de Goias; Universidade Federal de Goias; University of Arkansas System; University of Arkansas Fayetteville
推荐引用方式
GB/T 7714
Battisti, Rafael,Neto, Waldemiro Alcantara da Silva,da Costa, Ronaldo Martins,et al. Irrigation demand for fruit trees under a climate change scenario using artificial intelligence1[J],2024,54.
APA Battisti, Rafael,Neto, Waldemiro Alcantara da Silva,da Costa, Ronaldo Martins,Dapper, Felipe Puff,&Elli, Elvis Felipe.(2024).Irrigation demand for fruit trees under a climate change scenario using artificial intelligence1.PESQUISA AGROPECUARIA TROPICAL,54.
MLA Battisti, Rafael,et al."Irrigation demand for fruit trees under a climate change scenario using artificial intelligence1".PESQUISA AGROPECUARIA TROPICAL 54(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Battisti, Rafael]的文章
[Neto, Waldemiro Alcantara da Silva]的文章
[da Costa, Ronaldo Martins]的文章
百度学术
百度学术中相似的文章
[Battisti, Rafael]的文章
[Neto, Waldemiro Alcantara da Silva]的文章
[da Costa, Ronaldo Martins]的文章
必应学术
必应学术中相似的文章
[Battisti, Rafael]的文章
[Neto, Waldemiro Alcantara da Silva]的文章
[da Costa, Ronaldo Martins]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。