CCPortal
DOI10.1029/2023MS003749
The Impact of Climate Forcing Biases and the Nitrogen Cycle on Land Carbon Balance Projections
发表日期2024
EISSN1942-2466
起始页码16
结束页码1
卷号16期号:1
英文摘要Earth System Models (ESMs) project that the terrestrial carbon sink will continue to grow as atmospheric CO2 increases, but this projection is uncertain due to biases in the simulated climate and how ESMs represent ecosystem processes. In particular, the strength of the CO2-fertilization effect, which is modulated by nutrient cycles, varies substantially across models. This study evaluates land carbon balance uncertainties for the Canadian Earth System Model (CanESM) by conducting simulations where the latest version of CanESM's land surface component is driven offline with raw and bias-adjusted CanESM5 climate forcing data. To quantify the impact of nutrient limitation, we complete simulations where the nitrogen cycle is enabled or disabled. Results show that bias adjustment improves model performance across most ecosystem variables, primarily due to reduced biases in precipitation. Turning the nitrogen cycle on increases the global land carbon sink during the historical period (1995-2014) due to enhanced nitrogen deposition, placing it within the Global Carbon Budget uncertainty range. During the future period (2080-2099), the simulated land carbon sink increases in response to bias adjustment and decreases in response to the dynamic carbon-nitrogen interaction, leading to a net decrease when both factors are acting together. The dominating impact of the nitrogen cycle demonstrates the importance of representing nutrient limitation in ESMs. Such efforts may produce more robust carbon balance projections in support of global climate change mitigation policies such as the 2015 Paris Agreement. The implementation of global climate change policies relies on our ability to predict how the global carbon cycle will evolve in the future. Climate models project that the biosphere will continue to absorb more CO2 than it emits, keeping atmospheric CO2 levels lower than they would be otherwise. However, the strength of this net CO2 uptake varies considerably among models. This is because of differences in the simulated climate as well as the use of different methods for simulating plant growth. This study evaluates the importance of both factors by running one model with different climate data sets and model configurations. Our results show that the future net CO2 uptake by plants increases when removing biases in climatic conditions and decreases when accounting for the impact of soil nutrients on plant growth, leading to a net decrease when both factors are acting together. The dominating impact of the nutrients demonstrates the importance of representing nutrient limitation in climate models. Such efforts may produce more robust carbon balance projections in support of global climate change mitigation policies such as the 2015 Paris Agreement. Bias adjustment of climate forcing improves model performance across most variables, primarily due to reduced biases in precipitationThe inclusion of the N cycle increases the simulated C sink during the historical period, placing it within the observed uncertainty rangeThe future C sink increases with bias adjustment and decreases with the N cycle, resulting in a net decrease when both factors are at play
英文关键词land carbon balance; climate change; climate forcing bias; nitrogen cycle
语种英语
WOS研究方向Meteorology & Atmospheric Sciences
WOS类目Meteorology & Atmospheric Sciences
WOS记录号WOS:001143058500001
来源期刊JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/287824
作者单位Environment & Climate Change Canada; Queens University - Canada; Environment & Climate Change Canada; Canadian Centre for Climate Modelling & Analysis (CCCma); Dalhousie University
推荐引用方式
GB/T 7714
. The Impact of Climate Forcing Biases and the Nitrogen Cycle on Land Carbon Balance Projections[J],2024,16(1).
APA (2024).The Impact of Climate Forcing Biases and the Nitrogen Cycle on Land Carbon Balance Projections.JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS,16(1).
MLA "The Impact of Climate Forcing Biases and the Nitrogen Cycle on Land Carbon Balance Projections".JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 16.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。