Climate Change Data Portal
| DOI | 10.1109/LGRS.2024.3355104 |
| Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery | |
| Alshehri, Mariam; Ouadou, Anes; Scott, Grant J. | |
| 发表日期 | 2024 |
| ISSN | 1545-598X |
| EISSN | 1558-0571 |
| 起始页码 | 21 |
| 卷号 | 21 |
| 英文摘要 | Deforestation poses a critical environmental challenge with far-reaching impacts on climate change, biodiversity, and local communities. As such, detecting and monitoring deforestation are crucial, and recent advancements in deep learning (DL) and remote sensing technologies offer a promising solution to this challenge. In this study, we adapt ChangeFormer, a transformer-based framework, to detect deforestation in the Brazilian Amazon, employing the attention mechanism to analyze spatial and temporal patterns in bitemporal satellite images. To assess the model's effectiveness, we employed a robust approach to create a deforestation detection (DD) dataset, utilizing Sentinel-2 imagery from select conservation areas in the Brazilian Amazon throughout 2020 and 2021. Our dataset comprises 7734 pairs of bitemporal image chips with a resolution of 256 x 256 pixels and 1406 pairs of image chips with a resolution of 512 x 512 pixels. The model achieved an overall accuracy (OA) of 93% with a corresponding F1 score of 90% and an intersection over union (IoU) score of 82%. These results demonstrate the potential of transformer-based networks for accurate and efficient DD. |
| 英文关键词 | Climate change; Environmental monitoring; Deforestation; Forestry; Change detection algorithms; Deep learning; Transformers; Biodiversity; Detection algorithms; Spatiotemporal phenomena; Satellite images; South America; Change detection (CD); deep learning (DL); deforestation; transformer |
| 语种 | 英语 |
| WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
| WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
| WOS记录号 | WOS:001230653000023 |
| 来源期刊 | IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
![]() |
| 文献类型 | 期刊论文 |
| 条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/287676 |
| 作者单位 | University of Missouri System; University of Missouri Columbia; Princess Nourah bint Abdulrahman University |
| 推荐引用方式 GB/T 7714 | Alshehri, Mariam,Ouadou, Anes,Scott, Grant J.. Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery[J],2024,21. |
| APA | Alshehri, Mariam,Ouadou, Anes,&Scott, Grant J..(2024).Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,21. |
| MLA | Alshehri, Mariam,et al."Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 21(2024). |
| 条目包含的文件 | 条目无相关文件。 | |||||
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。