CCPortal
DOI10.1016/j.scitotenv.2023.169616
Impact of climate change on snowpack dynamics in coastal Central-Western Greenland
发表日期2024
ISSN0048-9697
EISSN1879-1026
起始页码913
卷号913
英文摘要Snow patterns in ice-free areas of Greenland play important roles in ecosystems. Within a changing climate, a comprehensive understanding of the snow responses to climate change is of interest to anticipate forthcoming dynamics in these areas. In this study, we analyze the future snowpack evolution of a polar maritime Arctic location, Qeqertarsuaq (Disko Island, Central-Western Greenland). A physically-based snow model (FSM2) is validated and forced with CMIP6 projections for SSP2-4.5 and SSP5-8.5 greenhouse gasses emission scenarios, using two models: CanESM5 and MIROC6. The future snowpack evolution is assessed through four key seasonal (October to May) snow climate indicators: snow depth, snow days, snowfall fraction and ablation rate. Com-parison against the observed air temperature for the reference climate period demonstrates superior accuracies for MIROC6 SSP2.4-5, with anomalies at 19 %, compared to CanESM5 SSP5.8-5 (25 %) and CanESM5 SSP2.4-5 (78 %). In terms of precipitation, CanESM5 SSP2.4-5 and SSP2.4-5 exhibit smaller anomalies against the observed data (5 %) in contrast to MIROC6 SSP2.4-5 (15 %) and MIROC6 SSP2.8-5 (17 %). Results demonstrate distinct snowpack responses to climate change depending on the model and emission scenario. For CanESM5, seasonal snow depth anomalies with respect to the reference period range from - 38 % (SSP2-4.5, 2040-2050 period) to - 74 % (SSP5-8.5, 2090-2100 period). MIROC6 projects lower snowpack reductions, with a decrease ranging from - 38 % (SSP2-4.5, 2040-2050 period) to - 57 % (SSP5-8.5, 2090-2100 period). Similar reductions are anticipated for snowfall and snow days. Changes in the snowpack evolution are primarily driven by positive trends in downwelling longwave radiation and air temperature. The projected increase in precipitation by the mid to late 21st century will lead to more frequent rain-on-snow events, intensifying snowpack melting. These findings help enhance the comprehension of future snow dynamics in the ice-free zones of Greenland, as well as the associated hydrological and ecological changes.
语种英语
WOS研究方向Environmental Sciences & Ecology
WOS类目Environmental Sciences
WOS记录号WOS:001166047600001
来源期刊SCIENCE OF THE TOTAL ENVIRONMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/287462
作者单位University of Barcelona; Universite de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS); Institut de Recherche pour le Developpement (IRD); Consejo Superior de Investigaciones Cientificas (CSIC)
推荐引用方式
GB/T 7714
. Impact of climate change on snowpack dynamics in coastal Central-Western Greenland[J],2024,913.
APA (2024).Impact of climate change on snowpack dynamics in coastal Central-Western Greenland.SCIENCE OF THE TOTAL ENVIRONMENT,913.
MLA "Impact of climate change on snowpack dynamics in coastal Central-Western Greenland".SCIENCE OF THE TOTAL ENVIRONMENT 913(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
百度学术
百度学术中相似的文章
必应学术
必应学术中相似的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。