CCPortal
DOI10.3390/electronics12204330
EDKSANet: An Efficient Dual-Kernel Split Attention Neural Network for the Classification of Tibetan Medicinal Materials
Qi, Jindong; Wangdui, Bianba; Jiang, Jun; Yang, Jie; Zhou, Yanxia
发表日期2023
EISSN2079-9292
卷号12期号:20
英文摘要Tibetan medicine has received wide acclaim for its unique diagnosis and treatment methods. The identification of Tibetan medicinal materials, which are a vital component of Tibetan medicine, is a key research area in this field. However, traditional deep learning-based visual neural networks face significant challenges in efficiently and accurately identifying Tibetan medicinal materials due to their large number, complex morphology, and the scarcity of public visual datasets. To address this issue, we constructed a computer vision dataset with 300 Tibetan medicinal materials and proposed a lightweight and efficient cross-dimensional attention mechanism, the Dual-Kernel Split Attention (DKSA) module, which can adaptively share parameters of the kernel in both spatial and channel dimensions. Based on the DKSA module, we achieve efficient unification of convolution and self-attention under the CNN architecture and develop a new lightweight backbone architecture, EDKSANet, to provide enhanced performance for various computer vision tasks. As compared to RedNet, the top-1 accuracy is improved by 1.2% on an ImageNet dataset, and a larger margin of +1.5 box AP for object detection and an improvement of +1.3 mask AP for instance segmentation on MS-COCO dataset are obtained. Moreover, EDKSANet achieved excellent classification performance on the Tibetan medicinal materials dataset, with an accuracy of up to 96.85%.
关键词Tibetan medicinal materialsefficient cross-dimensional attentionefficient unificationEDKSANetexcellent classification performance
WOS研究方向Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Physics, Applied
WOS记录号WOS:001089789300001
来源期刊ELECTRONICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/283793
作者单位Tibet University; Tibet University
推荐引用方式
GB/T 7714
Qi, Jindong,Wangdui, Bianba,Jiang, Jun,et al. EDKSANet: An Efficient Dual-Kernel Split Attention Neural Network for the Classification of Tibetan Medicinal Materials[J],2023,12(20).
APA Qi, Jindong,Wangdui, Bianba,Jiang, Jun,Yang, Jie,&Zhou, Yanxia.(2023).EDKSANet: An Efficient Dual-Kernel Split Attention Neural Network for the Classification of Tibetan Medicinal Materials.ELECTRONICS,12(20).
MLA Qi, Jindong,et al."EDKSANet: An Efficient Dual-Kernel Split Attention Neural Network for the Classification of Tibetan Medicinal Materials".ELECTRONICS 12.20(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi, Jindong]的文章
[Wangdui, Bianba]的文章
[Jiang, Jun]的文章
百度学术
百度学术中相似的文章
[Qi, Jindong]的文章
[Wangdui, Bianba]的文章
[Jiang, Jun]的文章
必应学术
必应学术中相似的文章
[Qi, Jindong]的文章
[Wangdui, Bianba]的文章
[Jiang, Jun]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。