Climate Change Data Portal
DOI | 10.3390/min13060730 |
CNN2D-SENet-Based Prospecting Prediction Method: A Case Study from the Cu Deposits in the Zhunuo Mineral Concentrate Area in Tibet | |
Ding, Ke; Xue, Linfu; Ran, Xiangjin; Wang, Jianbang; Yan, Qun | |
发表日期 | 2023 |
EISSN | 2075-163X |
卷号 | 13期号:6 |
英文摘要 | Intelligent prospecting and prediction are important research foci in the field of mineral resource exploration. To solve the problem of the performance degradation of deep convolutional neural networks, enhancing the attention to target information and suppressing unnecessary feature information, this paper proposes a new prospecting prediction method based on a two-dimensional convolutional neural network (CNN2D). This method mainly uses known Cu deposits as the positive sample labels, adopts the sliding window method for data enhancement, and uses the window area as a unit to extract spatial variation features. It is important to supplement squeeze-and-excitation networks (SENets) to add an attention mechanism to the channel dimension, assign a weight value to each feature layer, and finally make prospecting predictions by matching the features of the known deposit window area and the features of the unknown window area. This method allows the neural network to focus on certain characteristic channels and realizes prospecting prediction in the case where there are few known deposits so that the deep learning method can be more effectively used for the prospecting prediction of mineralization. Based on geological data, geochemical exploration data of water system sediments, and aeromagnetic data, and via this method, this study carried out prospecting prediction of Cu deposits in the Zhunuo area of Tibet and predicted 12 favorable Cu prospecting prediction areas. Combined with previous research results and field exploration, the predicted result is consistent with the established mineralization and prospecting pattern and has good prospects for Cu deposit prospecting. |
关键词 | CNN2DSENetdata enhancementCu depositsprospecting prediction |
英文关键词 | CONVOLUTIONAL NEURAL-NETWORK; ISOTOPIC CONSTRAINTS; BIG DATA; COPPER; METASOMATISM; EVOLUTION; PROVINCE |
WOS研究方向 | Geochemistry & Geophysics ; Mineralogy ; Mining & Mineral Processing |
WOS记录号 | WOS:001014907800001 |
来源期刊 | MINERALS
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/283299 |
作者单位 | Jilin University |
推荐引用方式 GB/T 7714 | Ding, Ke,Xue, Linfu,Ran, Xiangjin,et al. CNN2D-SENet-Based Prospecting Prediction Method: A Case Study from the Cu Deposits in the Zhunuo Mineral Concentrate Area in Tibet[J],2023,13(6). |
APA | Ding, Ke,Xue, Linfu,Ran, Xiangjin,Wang, Jianbang,&Yan, Qun.(2023).CNN2D-SENet-Based Prospecting Prediction Method: A Case Study from the Cu Deposits in the Zhunuo Mineral Concentrate Area in Tibet.MINERALS,13(6). |
MLA | Ding, Ke,et al."CNN2D-SENet-Based Prospecting Prediction Method: A Case Study from the Cu Deposits in the Zhunuo Mineral Concentrate Area in Tibet".MINERALS 13.6(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。