CCPortal
DOI10.3390/min13060730
CNN2D-SENet-Based Prospecting Prediction Method: A Case Study from the Cu Deposits in the Zhunuo Mineral Concentrate Area in Tibet
Ding, Ke; Xue, Linfu; Ran, Xiangjin; Wang, Jianbang; Yan, Qun
发表日期2023
EISSN2075-163X
卷号13期号:6
英文摘要Intelligent prospecting and prediction are important research foci in the field of mineral resource exploration. To solve the problem of the performance degradation of deep convolutional neural networks, enhancing the attention to target information and suppressing unnecessary feature information, this paper proposes a new prospecting prediction method based on a two-dimensional convolutional neural network (CNN2D). This method mainly uses known Cu deposits as the positive sample labels, adopts the sliding window method for data enhancement, and uses the window area as a unit to extract spatial variation features. It is important to supplement squeeze-and-excitation networks (SENets) to add an attention mechanism to the channel dimension, assign a weight value to each feature layer, and finally make prospecting predictions by matching the features of the known deposit window area and the features of the unknown window area. This method allows the neural network to focus on certain characteristic channels and realizes prospecting prediction in the case where there are few known deposits so that the deep learning method can be more effectively used for the prospecting prediction of mineralization. Based on geological data, geochemical exploration data of water system sediments, and aeromagnetic data, and via this method, this study carried out prospecting prediction of Cu deposits in the Zhunuo area of Tibet and predicted 12 favorable Cu prospecting prediction areas. Combined with previous research results and field exploration, the predicted result is consistent with the established mineralization and prospecting pattern and has good prospects for Cu deposit prospecting.
关键词CNN2DSENetdata enhancementCu depositsprospecting prediction
英文关键词CONVOLUTIONAL NEURAL-NETWORK; ISOTOPIC CONSTRAINTS; BIG DATA; COPPER; METASOMATISM; EVOLUTION; PROVINCE
WOS研究方向Geochemistry & Geophysics ; Mineralogy ; Mining & Mineral Processing
WOS记录号WOS:001014907800001
来源期刊MINERALS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/283299
作者单位Jilin University
推荐引用方式
GB/T 7714
Ding, Ke,Xue, Linfu,Ran, Xiangjin,et al. CNN2D-SENet-Based Prospecting Prediction Method: A Case Study from the Cu Deposits in the Zhunuo Mineral Concentrate Area in Tibet[J],2023,13(6).
APA Ding, Ke,Xue, Linfu,Ran, Xiangjin,Wang, Jianbang,&Yan, Qun.(2023).CNN2D-SENet-Based Prospecting Prediction Method: A Case Study from the Cu Deposits in the Zhunuo Mineral Concentrate Area in Tibet.MINERALS,13(6).
MLA Ding, Ke,et al."CNN2D-SENet-Based Prospecting Prediction Method: A Case Study from the Cu Deposits in the Zhunuo Mineral Concentrate Area in Tibet".MINERALS 13.6(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ding, Ke]的文章
[Xue, Linfu]的文章
[Ran, Xiangjin]的文章
百度学术
百度学术中相似的文章
[Ding, Ke]的文章
[Xue, Linfu]的文章
[Ran, Xiangjin]的文章
必应学术
必应学术中相似的文章
[Ding, Ke]的文章
[Xue, Linfu]的文章
[Ran, Xiangjin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。