CCPortal
DOI10.1016/j.scitotenv.2023.161394
Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms
Abdulla-Al Kafy; Bakshi, Arpita; Saha, Milan; Al Faisal, Abdullah; Almulhim, Abdulaziz I.; Rahaman, Zullyadini A.; Mohammad, Pir
发表日期2023
ISSN0048-9697
EISSN1879-1026
卷号867
英文摘要The consequences of droughts are far-reaching, impacting the natural environment, water quality, public health, and accelerating economic losses. Applications of remote sensing techniques using satellite imageries can play an influen-tial role in identifying drought severity (DS) and impacts for a broader range of areas. The Barind Tract (BT) is a region of Bangladesh located northwest of the country and considered one of the hottest, semi-arid, and drought-prone regions. This study aims to assess and predict the drought vulnerability over BT using Landsat satellite images from 1996 to 2031. Several indices, including Normalized Difference Vegetation Index (NDVI), Modified Normalized Differ-ence Water Index (MNDWI), Soil Moisture Content (SMC), Temperature Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index (VHI). VHI has been used to identify and predict DS based on VCI and TCI characteristics for 2026 and 2031 using Cellular Automata (CA)-Artificial Neural Network (ANN) algorithms. Results suggest an increasing patterns of DS accelerated by the reduction of healthy vegetation (19 %) and surface water bodies (26 %) and increased higher temperature (>5 degrees C) from 1996 to 2021. In addition, the VHI result signifies a mas-sive increase in extreme drought conditions from 1996 (2 %) to 2021 (7 %). The DS prediction witnessed a possible expansion in extreme and severe drought conditions in 2026 (15 % and 13 %) and 2031 (18 % and 24 %). Understand-ing the possible impacts of drought will allow planners and decision-makers to initiate mitigating measures for enhanc-ing the communities preparedness to cope with drought vulnerability.
英文关键词Drought; Vegetation health; Temperature; Water resources; Machine learning
语种英语
WOS研究方向Environmental Sciences
WOS类目Science Citation Index Expanded (SCI-EXPANDED)
WOS记录号WOS:000921070000001
来源期刊SCIENCE OF THE TOTAL ENVIRONMENT
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/281528
作者单位University of Texas System; University of Texas Austin; Khulna University of Engineering & Technology (KUET); Independent University Bangladesh (IUB); Bangladesh University of Engineering & Technology (BUET); McGill University; Imam Abdulrahman Bin Faisal University; Universiti Pendidikan Sultan Idris; Hong Kong Polytechnic University
推荐引用方式
GB/T 7714
Abdulla-Al Kafy,Bakshi, Arpita,Saha, Milan,et al. Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms[J],2023,867.
APA Abdulla-Al Kafy.,Bakshi, Arpita.,Saha, Milan.,Al Faisal, Abdullah.,Almulhim, Abdulaziz I..,...&Mohammad, Pir.(2023).Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms.SCIENCE OF THE TOTAL ENVIRONMENT,867.
MLA Abdulla-Al Kafy,et al."Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms".SCIENCE OF THE TOTAL ENVIRONMENT 867(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Abdulla-Al Kafy]的文章
[Bakshi, Arpita]的文章
[Saha, Milan]的文章
百度学术
百度学术中相似的文章
[Abdulla-Al Kafy]的文章
[Bakshi, Arpita]的文章
[Saha, Milan]的文章
必应学术
必应学术中相似的文章
[Abdulla-Al Kafy]的文章
[Bakshi, Arpita]的文章
[Saha, Milan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。