CCPortal
DOI10.3390/rs14143253
Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review
Yang, Liping; Driscol, Joshua; Sarigai, Sarigai; Wu, Qiusheng; Chen, Haifei; Lippitt, Christopher D.
发表日期2022
EISSN2072-4292
卷号14期号:14
英文摘要Remote sensing (RS) plays an important role gathering data in many critical domains (e.g., global climate change, risk assessment and vulnerability reduction of natural hazards, resilience of ecosystems, and urban planning). Retrieving, managing, and analyzing large amounts of RS imagery poses substantial challenges. Google Earth Engine (GEE) provides a scalable, cloud-based, geospatial retrieval and processing platform. GEE also provides access to the vast majority of freely available, public, multi-temporal RS data and offers free cloud-based computational power for geospatial data analysis. Artificial intelligence (AI) methods are a critical enabling technology to automating the interpretation of RS imagery, particularly on object-based domains, so the integration of AI methods into GEE represents a promising path towards operationalizing automated RS-based monitoring programs. In this article, we provide a systematic review of relevant literature to identify recent research that incorporates AI methods in GEE. We then discuss some of the major challenges of integrating GEE and AI and identify several priorities for future research. We developed an interactive web application designed to allow readers to intuitively and dynamically review the publications included in this literature review.
英文关键词Google Earth Engine (GEE); artificial intelligence (AI); machine learning; deep learning; computer vision; remote sensing; cloud computing; geospatial big data; review
语种英语
WOS研究方向Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Science Citation Index Expanded (SCI-EXPANDED)
WOS记录号WOS:000831858600001
来源期刊REMOTE SENSING
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/280932
作者单位University of New Mexico; University of New Mexico; University of New Mexico; University of Tennessee System; University of Tennessee Knoxville; University of New Mexico
推荐引用方式
GB/T 7714
Yang, Liping,Driscol, Joshua,Sarigai, Sarigai,et al. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review[J],2022,14(14).
APA Yang, Liping,Driscol, Joshua,Sarigai, Sarigai,Wu, Qiusheng,Chen, Haifei,&Lippitt, Christopher D..(2022).Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review.REMOTE SENSING,14(14).
MLA Yang, Liping,et al."Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review".REMOTE SENSING 14.14(2022).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Liping]的文章
[Driscol, Joshua]的文章
[Sarigai, Sarigai]的文章
百度学术
百度学术中相似的文章
[Yang, Liping]的文章
[Driscol, Joshua]的文章
[Sarigai, Sarigai]的文章
必应学术
必应学术中相似的文章
[Yang, Liping]的文章
[Driscol, Joshua]的文章
[Sarigai, Sarigai]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。