Climate Change Data Portal
DOI | 10.3390/rs14143253 |
Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review | |
Yang, Liping; Driscol, Joshua; Sarigai, Sarigai; Wu, Qiusheng; Chen, Haifei; Lippitt, Christopher D. | |
发表日期 | 2022 |
EISSN | 2072-4292 |
卷号 | 14期号:14 |
英文摘要 | Remote sensing (RS) plays an important role gathering data in many critical domains (e.g., global climate change, risk assessment and vulnerability reduction of natural hazards, resilience of ecosystems, and urban planning). Retrieving, managing, and analyzing large amounts of RS imagery poses substantial challenges. Google Earth Engine (GEE) provides a scalable, cloud-based, geospatial retrieval and processing platform. GEE also provides access to the vast majority of freely available, public, multi-temporal RS data and offers free cloud-based computational power for geospatial data analysis. Artificial intelligence (AI) methods are a critical enabling technology to automating the interpretation of RS imagery, particularly on object-based domains, so the integration of AI methods into GEE represents a promising path towards operationalizing automated RS-based monitoring programs. In this article, we provide a systematic review of relevant literature to identify recent research that incorporates AI methods in GEE. We then discuss some of the major challenges of integrating GEE and AI and identify several priorities for future research. We developed an interactive web application designed to allow readers to intuitively and dynamically review the publications included in this literature review. |
英文关键词 | Google Earth Engine (GEE); artificial intelligence (AI); machine learning; deep learning; computer vision; remote sensing; cloud computing; geospatial big data; review |
语种 | 英语 |
WOS研究方向 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Science Citation Index Expanded (SCI-EXPANDED) |
WOS记录号 | WOS:000831858600001 |
来源期刊 | REMOTE SENSING
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/280932 |
作者单位 | University of New Mexico; University of New Mexico; University of New Mexico; University of Tennessee System; University of Tennessee Knoxville; University of New Mexico |
推荐引用方式 GB/T 7714 | Yang, Liping,Driscol, Joshua,Sarigai, Sarigai,et al. Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review[J],2022,14(14). |
APA | Yang, Liping,Driscol, Joshua,Sarigai, Sarigai,Wu, Qiusheng,Chen, Haifei,&Lippitt, Christopher D..(2022).Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review.REMOTE SENSING,14(14). |
MLA | Yang, Liping,et al."Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review".REMOTE SENSING 14.14(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。