Climate Change Data Portal
DOI | 10.1111/1365-2435.14038 |
Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation | |
Bernard, Laetitia; Basile-Doelsch, Isabelle; Derrien, Delphine; Fanin, Nicolas; Fontaine, Sebastien; Guenet, Bertrand; Karimi, Battle; Marsden, Claire; Maron, Pierre-Alain | |
发表日期 | 2022 |
ISSN | 0269-8463 |
EISSN | 1365-2435 |
起始页码 | 1355 |
结束页码 | 1377 |
卷号 | 36期号:6 |
英文摘要 | The priming effect (PE) is a key mechanism contributing to the carbon balance of the soil ecosystem. Almost 100 years of research since its discovery in 1926 have led to a rich body of scientific publications to identify the drivers and mechanisms involved. A few review articles have summarised the acquired knowledge; the last major one was published in 2010. Since then, knowledge on the soil microbial communities involved in PE and in PE + C sequestration mechanisms has been considerably renewed. This article reviews current knowledge on soil PE to state to what extent new insights may improve our ability to understand and predict the evolution of soil C stocks. We propose a framework to unify the different concepts and terms that have emerged from the international scientific community on this topic, report recent discoveries and identify key research needs. Seventy per cent of the studies on the soil PE were published in the last 10 years, illustrating a renewed interest for PE, probably linked to the increased concern about the importance of soil carbon for climate change and food security issues. Among all the drivers and mechanisms proposed along with the different studies to explain PE, some are named differently but actually refer to the same object. This overall introduces 'artificial' complexity for the mechanistic understanding of PE, and we propose a common, shared terminology. Despite the remaining knowledge gaps, consistent progress has been achieved to decipher the abiotic mechanisms underlying PE, together with the role of enzymes and the identity of the microbial actors involved. However, including PE into mechanistic models of SOM dynamics remains challenging as long as the mechanisms are not fully understood. In the meantime, empirical alternatives are available that reproduce observations accurately when calibration is robust. Based on the current state of knowledge, we propose different scenarios depicting to what extent PE may impact ecosystem services under climate change conditions. Read the free Plain Language Summary for this article on the Journal blog. |
英文关键词 | carbon cycle; ecosystem services; enzymes; microbial actors; minerals; models; priming effect; soil |
语种 | 英语 |
WOS研究方向 | Ecology |
WOS类目 | Science Citation Index Expanded (SCI-EXPANDED) |
WOS记录号 | WOS:000772225100001 |
来源期刊 | FUNCTIONAL ECOLOGY
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/280775 |
作者单位 | INRAE; Universite de Montpellier; Institut Agro; Montpellier SupAgro; CIRAD; Institut de Recherche pour le Developpement (IRD); INRAE; Centre National de la Recherche Scientifique (CNRS); Aix-Marseille Universite; INRAE; Universite de Lorraine; INRAE; INRAE; Universite Clermont Auvergne (UCA); Universite Paris Cite; Universite PSL; Ecole Normale Superieure (ENS); Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Earth Sciences & Astronomy (INSU); Institut Agro; AgroSup Dijon; INRAE; Universite de Bourgogne |
推荐引用方式 GB/T 7714 | Bernard, Laetitia,Basile-Doelsch, Isabelle,Derrien, Delphine,et al. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation[J],2022,36(6). |
APA | Bernard, Laetitia.,Basile-Doelsch, Isabelle.,Derrien, Delphine.,Fanin, Nicolas.,Fontaine, Sebastien.,...&Maron, Pierre-Alain.(2022).Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation.FUNCTIONAL ECOLOGY,36(6). |
MLA | Bernard, Laetitia,et al."Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation".FUNCTIONAL ECOLOGY 36.6(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。