Climate Change Data Portal
DOI | 10.1016/j.agrformet.2022.108887 |
Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation | |
Ma, Ning; Zhang, Yongqiang | |
发表日期 | 2022 |
ISSN | 0168-1923 |
EISSN | 1873-2240 |
卷号 | 317 |
英文摘要 | While terrestrial evapotranspiration (ET) from the Tibetan Plateau (TP) plays a key role in modulating water storage change in the Asian Water Tower, the magnitude, trend, and drivers of ET remain poorly understood in this region due partially to sparse ground measurements. This study used a water-carbon coupled biophysical model, Penman-Monteith-Leuning Version 2 (PML_V2), to characterize the variations in ET across TP during 1982-2016 and its drivers. Model parameters of PML_V2 were calibrated against ground-observed data from 14 eddy-covariance flux towers. Plot- and basin-scale validations demonstrate that the PML_V2 is robust enough in simulating both magnitude and trend in ET. The 35-year mean annual ET rates decrease from the southeastern to the northwestern TP, leading to a TP-averaged value of 353 +/- 24 mm yr(-1). Soil evaporation is the main component (64%) of ET, followed by plant transpiration (31%) and canopy evaporation (5%). From 1982 to 2016, TP-averaged ET increased significantly with a rate of 1.87 +/- 0.25 mm yr(-2) (p < 0.001) due primarily to precipitation enhancement. Spatially, precipitation is the dominant driver that controls ET trend over most parts of TP except certain regions in the southeastern and eastern TP, where net radiation and temperature do so instead, respectively. This is because 68% of the TP area is dryland with the aridity index < 0.65. While LAI appears less important than climate factors over much of TP, its relative contribution to ET trend exceeds 20% in many parts of eastern TP, indicating that vegetation change played a nonnegligible role in regulating annual ET variations over certain regions where LAI varied substantially. Our results are of vital importance for facilitating the understanding of hydrological processes over the Asian Water Tower. |
英文关键词 | Terrestrial evapotranspiration; Trend; Driver; PML_V2; Tibetan Plateau |
语种 | 英语 |
WOS研究方向 | Agronomy ; Forestry ; Meteorology & Atmospheric Sciences |
WOS类目 | Science Citation Index Expanded (SCI-EXPANDED) |
WOS记录号 | WOS:000821897300004 |
来源期刊 | AGRICULTURAL AND FOREST METEOROLOGY
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/280686 |
作者单位 | Chinese Academy of Sciences; Institute of Geographic Sciences & Natural Resources Research, CAS |
推荐引用方式 GB/T 7714 | Ma, Ning,Zhang, Yongqiang. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation[J],2022,317. |
APA | Ma, Ning,&Zhang, Yongqiang.(2022).Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation.AGRICULTURAL AND FOREST METEOROLOGY,317. |
MLA | Ma, Ning,et al."Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation".AGRICULTURAL AND FOREST METEOROLOGY 317(2022). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ma, Ning]的文章 |
[Zhang, Yongqiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ma, Ning]的文章 |
[Zhang, Yongqiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ma, Ning]的文章 |
[Zhang, Yongqiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。