Climate Change Data Portal
DOI | 10.5194/acp-22-6843-2022 |
Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets | |
Weber, Mark; Arosio, Carlo; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Tourpali, Kleareti; Burrows, John P.; Loyola, Diego | |
发表日期 | 2022 |
ISSN | 1680-7316 |
EISSN | 1680-7324 |
起始页码 | 6843 |
结束页码 | 6859 |
卷号 | 22期号:10页码:17 |
英文摘要 | We report on updated trends using different merged zonal mean total ozone datasets from satellite and ground-based observations for the period from 1979 to 2020. This work is an update of the trends reported in Weber et al. (2018) using the same datasets up to 2016. Merged datasets used in this study include NASA MOD v8.7 and NOAA Cohesive Data (COH) v8.6, both based on data from the series of Solar Backscatter Ultraviolet (SBUV), SBUV-2, and Ozone Mapping and Profiler Suite (OMPS) satellite instruments (1978-present), as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone - Essential Climate Variable (GTOECV) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (both 1995-present), mainly comprising satellite data from GOME, SCIAMACHY, OMI, GOME-2A, GOME-2B, and TROPOMI. The fifth dataset consists of the annual mean zonal mean data from ground-based measurements collected at the World Ozone and Ultraviolet Radiation Data Centre (WOUDC). Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. The addition of 4 more years consolidated the fact that total ozone is indeed slowly recovering in both hemispheres as a result of phasing out ozone-depleting substances (ODSs) as mandated by the Montreal Protocol. The near-global (60 degrees S-60 degrees N) ODS-related ozone trend of the median of all datasets after 1995 was 0.4 +/- 0.2 (2 sigma) %/decade, which is roughly a third of the decreasing rate of 1.5 +/- 0.6 %/decade from 1978 until 1995. The ratio of decline and increase is nearly identical to that of the EESC (equivalent effective stratospheric chlorine or stratospheric halogen) change rates before and after 1995, confirming the success of the Montreal Protocol. The observed total ozone time series are also in very good agreement with the median of 17 chemistry climate models from CCMI-1 (Chemistry-Climate Model Initiative Phase 1) with current ODS and GHG (greenhouse gas) scenarios (REF-C2 scenario). The positive ODS-related trends in the Northern Hemisphere (NH) after 1995 are only obtained with a sufficient number of terms in the MLR accounting properly for dynamical ozone changes (Brewer-Dobson circulation, Arctic Oscillation (AO), and Antarctic Oscillation (AAO)). A standard MLR (limited to solar, Quasi-Biennial Oscillation (QBO), volcanic, and El Nino-Southern Oscillation (ENSO)) leads to zero trends, showing that the small positive ODS-related trends have been balanced by negative trend contributions from atmospheric dynamics, resulting in nearly constant total ozone levels since 2000. |
学科领域 | Environmental Sciences; Meteorology & Atmospheric Sciences |
语种 | 英语 |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000799919700001 |
来源期刊 | ATMOSPHERIC CHEMISTRY AND PHYSICS
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/273822 |
作者单位 | University of Bremen; Helmholtz Association; German Aerospace Centre (DLR); Environment & Climate Change Canada; Science Systems and Applications Inc; National Oceanic Atmospheric Admin (NOAA) - USA; Aristotle University of Thessaloniki |
推荐引用方式 GB/T 7714 | Weber, Mark,Arosio, Carlo,Coldewey-Egbers, Melanie,et al. Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets[J],2022,22(10):17. |
APA | Weber, Mark.,Arosio, Carlo.,Coldewey-Egbers, Melanie.,Fioletov, Vitali E..,Frith, Stacey M..,...&Loyola, Diego.(2022).Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(10),17. |
MLA | Weber, Mark,et al."Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.10(2022):17. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。