CCPortal
DOI10.5194/acp-22-15817-2022
Optimizing 4 years of CO2 biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data
Peiro, Helene; Crowell, Sean; Moore III, Berrien
发表日期2022
ISSN1680-7316
EISSN1680-7324
起始页码15817
结束页码15849
卷号22期号:24页码:33
英文摘要Column mixing ratio of carbon dioxide (CO2) data alone do not provide enough information for source attribution. Carbon monoxide (CO) is a product of inefficient combustion often co-emitted with CO2. CO data can then provide a powerful constraint on fire emissions, supporting more accurate estimation of biospheric CO2 fluxes. In this framework and using the chemistry transport model TM5, a CO inversion using Measurements of Pollution in The Troposphere (MOPITT) v8 data is performed to estimate fire emissions which are then converted into CO2 fire emissions (called FIREMo) through the use of the emission ratio. These optimized CO2 fire emissions are used to rebalance the CO2 net ecosystem exchange (NEEMo) and respiration (RhMo) with the global CO2 growth rate. Subsequently, in a second step, these rebalanced fluxes are used as priors for a CO(2 )inversion to derive the NEE and ocean fluxes constrained either by the Orbiting Carbon Observatory 2 (OCO-2) v9 or by in situ (IS) CO2 data. For comparison purpose, we also balanced the respiration using fire emissions from the Global Fire Emissions Database (GFED) version 3 (GFED3) and version 4.1s (GFED4.1s). We hence study the impact of CO fire emissions in our CO2 inversions at global, latitudinal, and regional scales over the period 2015-2018 and compare our results to the two other similar approaches using GFED3 (FIRE3) and GFED4.1s (FIRE4) fires, as well as with an inversion using both Carnegie-Ames-Stanford Approach (CASA)-GFED3 NEE and GFED3 fire priors (priorCMS). After comparison at the different scales, the inversions are evaluated against Total Carbon Column Observing Network (TCCON) data. Comparison of the flux estimates shows that at the global scale posterior net flux estimates are more robust than the different prior flux estimates. However, at the regional scale, we can observe differences in fire emissions among the priors, resulting in differences among the NEE prior emissions. The derived NEE prior emissions are rebalanced in concert with the fires. Consequently, the differences observed in the NEE posterior emissions are a result of the balancing with fires and the constraints provided by CO2 observations. Tropical net flux estimates from in situ inversions are highly sensitive to the prior flux assumed, of which fires are a significant component. Slightly larger net CO2 sources are derived with posterior fire emissions using either FIRE4 or FIREMo in the OCO-2 inversion, in particular for most tropical regions during the 2015 El Nino year. Similarly, larger net CO2 sources are also derived with posterior fire emissions in the in situ data inversion for Tropical Asia. Evaluation with CO2 TCCON data shows lower biases with the three rebalanced priors than with the prior using CASA-GFED3. However, posteriors have average bias and scatter very close each other, making it difficult to conclude which simulation performs better than the other. We observe that the assimilated CO2 data have a strong influence on the global net fluxes among the different inversions. Inversions using OCO-2 (or IS) data have similar emissions, mostly as a result of the observational constraints and to a lesser extent because of the fire prior used. But results in the tropical regions suggest net flux sensitivity to the fire prior for both the IS and OCO-2 inversions. Further work is needed to improve prior fluxes in tropical regions where fires are a significant component.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000899734300001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273699
作者单位University of Oklahoma System; University of Oklahoma - Norman
推荐引用方式
GB/T 7714
Peiro, Helene,Crowell, Sean,Moore III, Berrien. Optimizing 4 years of CO2 biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data[J],2022,22(24):33.
APA Peiro, Helene,Crowell, Sean,&Moore III, Berrien.(2022).Optimizing 4 years of CO2 biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(24),33.
MLA Peiro, Helene,et al."Optimizing 4 years of CO2 biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.24(2022):33.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Peiro, Helene]的文章
[Crowell, Sean]的文章
[Moore III, Berrien]的文章
百度学术
百度学术中相似的文章
[Peiro, Helene]的文章
[Crowell, Sean]的文章
[Moore III, Berrien]的文章
必应学术
必应学术中相似的文章
[Peiro, Helene]的文章
[Crowell, Sean]的文章
[Moore III, Berrien]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。