CCPortal
DOI10.5194/acp-22-4951-2022
Formation, radiative forcing, and climatic effects of severe regional haze
Lin, Yun; Wang, Yuan; Pan, Bowen; Hu, Jiaxi; Guo, Song; Zamora, Misti Levy; Tian, Pengfei; Su, Qiong; Ji, Yuemeng; Zhao, Jiayun; Gomez-Hernandez, Mario; Hu, Min; Zhang, Renyi
发表日期2022
ISSN1680-7316
EISSN1680-7324
起始页码4951
结束页码4967
卷号22期号:7页码:17
英文摘要Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. The occurrence of the haze extremes involves a complex interplay between primary emissions, secondary formation, and conducive meteorological conditions, and the relative contributions of the various processes remain unclear. Here we investigated severe regional haze episodes in 2013 over the Northern China Plain (NCP), by evaluating the PM production and the interactions between elevated PM and the planetary boundary layer (PBL). Analysis of the ground-based measurements and satellite observations of PM properties shows nearly synchronized temporal PM variations among the three megacities (Beijing, Baoding, and Shijiazhuang) in this region and a coincidence of the aerosol optical depth (AOD) hotspots with the three megacities during the polluted period. During the clean-to-hazy transition, the measured oxygenated organic aerosol concentration ([OOA]) well correlates with the odd-oxygen concentration ([O-x] = [O-3] + [NO2]), and the mean [OOA] / [O-x] ratio in Beijing is much larger than those in other megacities (such as Mexico City and Houston), indicating highly efficient photochemical activity. Simulations using the Weather Research and Forecasting (WRF) model coupled with an explicit aerosol radiative module reveal that strong aerosol-PBL interaction during the polluted period results in a suppressed and stabilized PBL and elevated humidity, triggering a positive feedback to amplify the haze severity at the ground level. Model sensitivity study illustrates the importance of black carbon (BC) in the haze-PBL interaction and the aerosol regional climatic effect, contributing to more than 30 % of the PBL collapse and about half of the positive radiative forcing on the top of the atmosphere. Overall, severe regional haze exhibits strong negative radiative forcing (cooling) of -63 to -88 W m(-2) at the surface and strong positive radiative forcing (warming) of 57 to 82 W m(-2) in the atmosphere, with a slightly negative net radiative forcing of about -6 W m(-2) on the top of the atmosphere. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation. On the other hand, regional transport sufficiently disperses gaseous aerosol precursors (e.g., sulfur dioxide, nitrogen oxides, volatile organic compounds, and ammonia) during the clean period, which subsequently result in rapid in situ PM production via photochemistry during the transition period and via multiphase chemistry during the polluted period. Our findings highlight the co-benefits for reduction in BC emissions, which not only improve local and regional air quality by minimizing air stagnation but also mitigate the global warming by alleviating the positive direct radiative forcing.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000782409100001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273587
作者单位Texas A&M University System; Texas A&M University College Station; University of California System; University of California Los Angeles; California Institute of Technology; Colorado State University; National Oceanic Atmospheric Admin (NOAA) - USA; Peking University; University of Connecticut; Lanzhou University; Texas A&M University System; Texas A&M University College Station; Guangdong University of Technology; Texas A&M University System; Texas A&M University College Station
推荐引用方式
GB/T 7714
Lin, Yun,Wang, Yuan,Pan, Bowen,et al. Formation, radiative forcing, and climatic effects of severe regional haze[J],2022,22(7):17.
APA Lin, Yun.,Wang, Yuan.,Pan, Bowen.,Hu, Jiaxi.,Guo, Song.,...&Zhang, Renyi.(2022).Formation, radiative forcing, and climatic effects of severe regional haze.ATMOSPHERIC CHEMISTRY AND PHYSICS,22(7),17.
MLA Lin, Yun,et al."Formation, radiative forcing, and climatic effects of severe regional haze".ATMOSPHERIC CHEMISTRY AND PHYSICS 22.7(2022):17.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lin, Yun]的文章
[Wang, Yuan]的文章
[Pan, Bowen]的文章
百度学术
百度学术中相似的文章
[Lin, Yun]的文章
[Wang, Yuan]的文章
[Pan, Bowen]的文章
必应学术
必应学术中相似的文章
[Lin, Yun]的文章
[Wang, Yuan]的文章
[Pan, Bowen]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。