CCPortal
DOI10.5194/acp-23-375-2023
Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data
Feng, Jin; Li, Yanjie; Qiu, Yulu; Zhu, Fuxin
发表日期2023
ISSN1680-7316
EISSN1680-7324
起始页码375
结束页码388
卷号23期号:1页码:14
英文摘要The estimation of daily variations in aerosol concentrations using meteorological data is meaningful and challenging, given the need for accurate air quality forecasts and assessments. In this study, a 3x50-layer spatiotemporal deep learning (DL) model is proposed to link synoptic variations in aerosol concentrations and meteorology, thereby building a deep Weather Index for Aerosols (deepWIA). The model was trained and validated using 7 years of data and tested in January-April 2022. The index successfully reproduced the variation in daily PM2.5 observations in China. The coefficient of determination between PM2.5 concentrations calculated from the index and observation was 0.72, with a root mean square error (RMSE) of 16.5 mu g m(-3). The DeepWIA performed better than Weather Forecast and Research (WRF)-Chem simulations for eight aerosol-polluted cities in China. The simulating power of the model also outperformed commonly used PM2.5 concentration retrieval models based on random forest (RF), extreme gradient boost (XGB), and multilayer perceptron (MLP). The index and the DL model can be used as robust tools for estimating daily variations in aerosol concentrations.
学科领域Environmental Sciences; Meteorology & Atmospheric Sciences
语种英语
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS记录号WOS:000911428800001
来源期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
文献类型期刊论文
条目标识符http://gcip.llas.ac.cn/handle/2XKMVOVA/273570
作者单位Chinese Academy of Sciences; Institute of Atmospheric Physics, CAS
推荐引用方式
GB/T 7714
Feng, Jin,Li, Yanjie,Qiu, Yulu,et al. Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data[J],2023,23(1):14.
APA Feng, Jin,Li, Yanjie,Qiu, Yulu,&Zhu, Fuxin.(2023).Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data.ATMOSPHERIC CHEMISTRY AND PHYSICS,23(1),14.
MLA Feng, Jin,et al."Capturing synoptic-scale variations in surface aerosol pollution using deep learning with meteorological data".ATMOSPHERIC CHEMISTRY AND PHYSICS 23.1(2023):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feng, Jin]的文章
[Li, Yanjie]的文章
[Qiu, Yulu]的文章
百度学术
百度学术中相似的文章
[Feng, Jin]的文章
[Li, Yanjie]的文章
[Qiu, Yulu]的文章
必应学术
必应学术中相似的文章
[Feng, Jin]的文章
[Li, Yanjie]的文章
[Qiu, Yulu]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。