Climate Change Data Portal
DOI | 10.1038/s41561-022-00995-2 |
Composition of continental crust altered by the emergence of land plants | |
Spencer, Christopher J.; Davies, Neil S.; Gernon, Thomas M.; Wang, Xi; McMahon, William J.; Morrell, Taylor Rae, I; Hincks, Thea; Pufahl, Peir K.; Brasier, Alexander; Seraine, Marina; Lu, Gui-Mei | |
发表日期 | 2022 |
ISSN | 1752-0894 |
EISSN | 1752-0908 |
起始页码 | 735 |
结束页码 | + |
卷号 | 15期号:9页码:14 |
英文摘要 | The evolution of land plants during the Palaeozoic era transformed Earth's biosphere. Because the Earth's surface and interior are linked by tectonic processes, the linked evolution of the biosphere and sedimentary rocks should be recorded as a near-contemporary shift in the composition of the continental crust. To test this hypothesis, we assessed the isotopic signatures of zircon formed at subduction zones where marine sediments are transported into the mantle, thereby recording interactions between surface environments and the deep Earth. Using oxygen and lutetium-hafnium isotopes of magmatic zircon that respectively track surface weathering (time independent) and radiogenic decay (time dependent), we find a correlation in the composition of continental crust after 430 Myr ago, which is coeval with the onset of enhanced complexity and stability in sedimentary systems related to the evolution of vascular plants. The expansion of terrestrial vegetation brought channelled sand-bed and meandering rivers, muddy floodplains and thicker soils, lengthening the duration of weathering before final marine deposition. Collectively, our results suggest that the evolution of vascular plants coupled the degree of weathering and timescales of sediment routing to depositional basins where they were subsequently subducted and melted. The late Palaeozoic isotopic shift of zircon indicates that the greening of the continents was recorded in the deep Earth. Colonization of continents by plants some 430 Myr ago enhanced the complexity of weathering and sedimentary systems, and altered the composition of continental crust, according to statistical assessment of zircon compositions. |
学科领域 | Geosciences, Multidisciplinary |
语种 | 英语 |
WOS研究方向 | Geology |
WOS记录号 | WOS:000847284300001 |
来源期刊 | NATURE GEOSCIENCE
![]() |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/272450 |
作者单位 | Queens University - Canada; University of Cambridge; NERC National Oceanography Centre; University of Southampton; University of Aberdeen; China University of Geosciences |
推荐引用方式 GB/T 7714 | Spencer, Christopher J.,Davies, Neil S.,Gernon, Thomas M.,et al. Composition of continental crust altered by the emergence of land plants[J],2022,15(9):14. |
APA | Spencer, Christopher J..,Davies, Neil S..,Gernon, Thomas M..,Wang, Xi.,McMahon, William J..,...&Lu, Gui-Mei.(2022).Composition of continental crust altered by the emergence of land plants.NATURE GEOSCIENCE,15(9),14. |
MLA | Spencer, Christopher J.,et al."Composition of continental crust altered by the emergence of land plants".NATURE GEOSCIENCE 15.9(2022):14. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。