Climate Change Data Portal
DOI | 10.1109/TGRS.2021.3094321 |
Integration of Multisource Data to Estimate Downward Longwave Radiation Based on Deep Neural Networks | |
Zhu, Fuxin; Li, Xin; Qin, Jun; Yang, Kun; Cuo, Lan; Tang, Wenjun; Shen, Chaopeng | |
通讯作者 | Qin, J (通讯作者) |
发表日期 | 2022 |
ISSN | 0196-2892 |
EISSN | 1558-0644 |
卷号 | 60 |
英文摘要 | Downward longwave radiation (DLR) at the surface is a key variable of interest in fields, such as hydrology and climate research. However, existing DLR estimation methods and DLR products are still problematic in terms of both accuracy and spatiotemporal resolution. In this article, we propose a deep convolutional neural network (DCNN)-based method to estimate hourly DLR at 5-km spatial resolution from top of atmosphere (TOA) brightness temperature (BT) of the Himawari-8/Advanced Himawari Imager (AHI) thermal channels, combined with near-surface air temperature and dew point temperature of ERA5 and elevation data. Validation results show that the DCNN-based method outperforms popular random forest and multilayer perceptron-based methods and that our proposed scheme integrating multisource data outperforms that only using remote sensing TOA observations or surface meteorological data. Compared with state-of-the-art CERES-SYN and ERA5-land DLR products, the estimated DLR by our proposed DCNN-based method with physical multisource inputs has higher spatiotemporal resolution and accuracy, with correlation coefficient (CC) of 0.95, root-mean-square error (RMSE) of 17.2 W/m(2), and mean bias error (MBE) of -0.8 W/m(2) in the testing period on the Tibetan Plateau. |
关键词 | SURFACE RADIATIONMODISFLUXPARAMETERIZATIONSVALIDATIONSHORTWAVEBIASLST |
英文关键词 | Spatial resolution; Estimation; Land surface; Atmospheric modeling; Clouds; Ocean temperature; Temperature distribution; Deep convolutional neural network (DCNN); downward longwave radiation (DLR); Himawari-8; Tibetan Plateau (TP) |
语种 | 英语 |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000732791700001 |
来源期刊 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/260691 |
推荐引用方式 GB/T 7714 | Zhu, Fuxin,Li, Xin,Qin, Jun,et al. Integration of Multisource Data to Estimate Downward Longwave Radiation Based on Deep Neural Networks[J]. 中国科学院青藏高原研究所,2022,60. |
APA | Zhu, Fuxin.,Li, Xin.,Qin, Jun.,Yang, Kun.,Cuo, Lan.,...&Shen, Chaopeng.(2022).Integration of Multisource Data to Estimate Downward Longwave Radiation Based on Deep Neural Networks.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60. |
MLA | Zhu, Fuxin,et al."Integration of Multisource Data to Estimate Downward Longwave Radiation Based on Deep Neural Networks".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。