Climate Change Data Portal
DOI | 10.1016/j.atmosres.2021.105481 |
Variation characteristics of temperature and precipitation on the northern slopes of the Himalaya region from 1979 to 2018 | |
Han, Yizhe; Ma, Yaoming; Wang, Zhongyan; Xie, Zhipeng; Sun, Genhou; Wang, Binbin; Ma, Weiqiang; Su, Rongmingzhu; Hu, Wei; Fan, Yixi | |
通讯作者 | Ma, YM ; Wang, ZY (通讯作者) |
发表日期 | 2021 |
ISSN | 0169-8095 |
EISSN | 1873-2895 |
卷号 | 253 |
英文摘要 | The northern slopes of Himalaya (NSH) have the highest average elevation in the world. It is difficult to assess how climate change has affected this region because only a few observations are available from the high terrain and harsh environment. This study investigates the long-term characteristics of temperature and precipitation in the NSH. Further, the association of these variations with atmospheric circulation patterns is also investigated. Our results indicated that the warming trend in this region is almost 1.5 times that of the TP region, 2 times that of China, and 3.5 times that of the world. Additionally, the warming rate of the NSH is more obvious than other regions in the Himalayas, which shows that different regions of the Himalayas have different sensitivity to climate change. Although the warming trend in the NSH region does not show obvious seasonal differences like the TP, the temperature increase rate in autumn and winter is still higher than that in spring and summer. The abrupt change point for the temperature increase in summer was about 5 years later than that in other seasons, indicating that the NSH region is more sensitive to climate warming in cooler seasons, which is similar to the western and northwestern Himalaya. Furthermore, the Southern Oscillation Index (SOI) displays significant relationships with the temperature in the NSH, meanwhile, the North Atlantic Oscillation index (NAO) and Western Pacific Subtropical High Intensity Index (WPI) also exist some correlations with seasonal temperature change. This indicating that the atmospheric circulation would also have affected the temperature increase in this region, especially in summer and winter. The changes in precipitation are only affected by the SOI during the monsoon season (June to September), indicating that ENSO influences precipitation changes through water vapor transmission. In contrast, the precipitation in the TP is correlated with NAO, SOI and WPI, which indicating the precipitation of the TP might be affected by multiple circulation systems. |
关键词 | TIBETAN PLATEAUDECADAL TRENDSCLIMATE-CHANGEMOUNT EVERESTSTRONG WINDSOSCILLATIONSEASONALITYSIMULATIONEXTREMESVICINITY |
英文关键词 | Northern slopes of the Himalaya (NSH); Tibetan Plateau; Temperature and precipitation; Trend test; Correlation analysis; Atmospheric circulation patterns |
语种 | 英语 |
WOS研究方向 | Meteorology & Atmospheric Sciences |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000624603700001 |
来源期刊 | ATMOSPHERIC RESEARCH |
来源机构 | 中国科学院青藏高原研究所 |
文献类型 | 期刊论文 |
条目标识符 | http://gcip.llas.ac.cn/handle/2XKMVOVA/260463 |
推荐引用方式 GB/T 7714 | Han, Yizhe,Ma, Yaoming,Wang, Zhongyan,et al. Variation characteristics of temperature and precipitation on the northern slopes of the Himalaya region from 1979 to 2018[J]. 中国科学院青藏高原研究所,2021,253. |
APA | Han, Yizhe.,Ma, Yaoming.,Wang, Zhongyan.,Xie, Zhipeng.,Sun, Genhou.,...&Fan, Yixi.(2021).Variation characteristics of temperature and precipitation on the northern slopes of the Himalaya region from 1979 to 2018.ATMOSPHERIC RESEARCH,253. |
MLA | Han, Yizhe,et al."Variation characteristics of temperature and precipitation on the northern slopes of the Himalaya region from 1979 to 2018".ATMOSPHERIC RESEARCH 253(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。